# Copyright 2022 Daniel van Strien. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """NLS Chapbook Images""" import collections import json import os from typing import Any, Dict, List import datasets _CITATION = "TODO" _DESCRIPTION = "TODO" _HOMEPAGE = "TODO" _LICENSE = "Public Domain Mark 1.0" # TODO confirm licence terms for annotations _IMAGES_URL = "https://nlsfoundry.s3.amazonaws.com/data/nls-data-chapbooks.zip" # TODO update url if this is merged upstream _ANNOTATIONS_URL = "https://gitlab.com/davanstrien/nls-chapbooks-illustrations/-/raw/master/data/annotations/step5-manual-verification-image-0-47329_train_coco.json" class NationalLibraryScotlandChapBooksConfig(datasets.BuilderConfig): """BuilderConfig for National Library of Scotland Chapbooks dataset.""" def __init__(self, name, **kwargs): super(NationalLibraryScotlandChapBooksConfig, self).__init__( version=datasets.Version("1.0.0"), name=name, description="TODO", **kwargs, ) class NationalLibraryScotlandChapBooks(datasets.GeneratorBasedBuilder): """National Library of Scotland Chapbooks dataset.""" BUILDER_CONFIGS = [ NationalLibraryScotlandChapBooksConfig("illustration_detection"), NationalLibraryScotlandChapBooksConfig("image_classification"), ] def _info(self): if self.config.name == "illustration_detection": features = datasets.Features( { "image_id": datasets.Value("int64"), "image": datasets.Image(), "width": datasets.Value("int32"), "height": datasets.Value("int32"), "url": datasets.Value("string"), "date_captured": datasets.Value("string"), } ) object_dict = { "category_id": datasets.ClassLabel( names=["early_printed_illustration"] ), "image_id": datasets.Value("string"), "id": datasets.Value("int64"), "area": datasets.Value("int64"), "bbox": datasets.Sequence(datasets.Value("float32"), length=4), "segmentation": [[datasets.Value("float32")]], "iscrowd": datasets.Value("bool"), } features["objects"] = [object_dict] if self.config.name == "image_classification": features = datasets.Features( { "image": datasets.Image(), "label": datasets.ClassLabel( num_classes=2, names=["not-illustrated", "illustrated"] ), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): images = dl_manager.download_and_extract(_IMAGES_URL) annotations = dl_manager.download(_ANNOTATIONS_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "annotations_file": os.path.join(annotations), "image_dir": os.path.join(images, "nls-data-chapbooks"), }, ) ] def _get_image_id_to_annotations_mapping( self, annotations: List[Dict] ) -> Dict[int, List[Dict[Any, Any]]]: """ A helper function to build a mapping from image ids to annotations. """ image_id_to_annotations = collections.defaultdict(list) for annotation in annotations: image_id_to_annotations[annotation["image_id"]].append(annotation) return image_id_to_annotations def _generate_examples(self, annotations_file, image_dir): def _image_info_to_example(image_info, image_dir): image = image_info["file_name"] return { "image_id": image_info["id"], "image": os.path.join(image_dir, image), "width": image_info["width"], "height": image_info["height"], "url": image_info.get("url"), "date_captured": image_info["date_captured"], } with open(annotations_file, encoding="utf8") as f: annotation_data = json.load(f) images = annotation_data["images"] annotations = annotation_data["annotations"] image_id_to_annotations = self._get_image_id_to_annotations_mapping( annotations ) if self.config.name == "illustration_detection": for idx, image_info in enumerate(images): example = _image_info_to_example( image_info, image_dir, ) annotations = image_id_to_annotations[image_info["id"]] objects = [] for annot in annotations: category_id = annot["category_id"] if category_id == 1: annot["category_id"] = 0 object_ = annot objects.append(object_) example["objects"] = objects yield idx, example if self.config.name == "image_classification": for idx, image_info in enumerate(images): example = _image_info_to_example(image_info, image_dir) annotations = image_id_to_annotations[image_info["id"]] if len(annotations) < 1: label = 0 else: label = 1 example = { "image": os.path.join(image_dir, image_info["file_name"]), "label": label, } yield idx, example