--- language: - en --- > 上述数据集为ABSA(Aspect-Based Sentiment Analysis)领域数据集,基本形式为从句子中抽取:方面术语、方面类别(术语类别)、术语在上下文中情感极性以及针对该术语的观点词,不同数据集抽取不同的信息,这点在jsonl文件的“instruction”键中有分别提到,在此我将其改造为了生成任务,需要模型按照一定格式生成抽取结果。 补充:SemEval-2015数据集文件夹中有两个文件夹"laptop"和"restaurant",其实根据数据集文本的主要围绕主题区分的。抽取的元素方面,laptop和restaurant两文件夹中,数据的抽取元素也不同,laptop抽取的是方面类别和情感极性的二元组,restaurant抽取的是方面术语、方面类别和情感极性的三元组 #### 以acos数据集中抽取的jsonl文件一条数据举例: ``` { "task_type": "generation", "dataset": "acos", "input": ["the computer has difficulty switching between tablet and computer ."], "output": "[['computer', 'laptop usability', 'negative', 'difficulty']]", "situation": "none", "label": "", "extra": "", "instruction": " Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: \"Null\" means that there is no occurrence in the sentence. Example: Sentence: \"Also it's not a true SSD drive in there but eMMC, which makes a difference.\" Output: [['SSD drive', 'hard_disc operation_performance', 'negative', 'NULL']]' " } ``` > 此处未设置label和extra,在instruction中以如上所示的字符串模板,并给出一个例子进行one-shot,ABSA领域数据集(absa-quad,acos,arts,aste-data-v2,mams,semeval-2014,semeval-2015,semeval-2016,towe)每个数据集对应instruction模板相同,内容有细微不同,且部分数据集存在同一数据集不同数据instruction内容不同的情况。 #### 原始数据集 - 数据[链接](https://alt.qcri.org/semeval2015/task12/) - Paper:[SemEval-2015 Task 12: Aspect Based Sentiment Analysis](https://aclanthology.org/S15-2082/) - 说明:数据分为Laptop和restaurant两个主题的数据,分别在两个文件夹中放置。两个主题的数据抽取的元素不同。 #### 当前SOTA *数据来自[PaperWithCode](https://paperswithcode.com/sota)* - SemEval2015-Laptop 未调研到该部分数据的评测 - [SemEval2015-Restaurant](https://paperswithcode.com/sota/aspect-based-sentiment-analysis-on-semeval-4) - 评价指标:Accuracy(抽取的分类准确率) - 模型:HAABSA++ (**81.7**) - Paper:[A Hybrid Approach for Aspect-Based Sentiment Analysis Using Deep Contextual Word Embeddings and Hierarchical Attention](https://paperswithcode.com/paper/a-hybrid-approach-for-aspect-based-sentiment-1)