import os import random import datasets from datasets.tasks import ImageClassification _HOMEPAGE = ( f"https://www.modelscope.cn/datasets/MuGemSt/{os.path.basename(__file__)[:-3]}" ) _URL = f"{_HOMEPAGE}/resolve/master/images.zip" _NAMES = ["Centromere", "Golgi", "Homogeneous", "NuMem", "Nucleolar", "Speckled"] class HEp2(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "image": datasets.Image(), "label": datasets.features.ClassLabel(names=_NAMES), } ), supervised_keys=("image", "label"), homepage=_HOMEPAGE, license="mit", version="0.0.1", task_templates=[ ImageClassification( task="image-classification", image_column="image", label_column="label", ) ], ) def _ground_truth(self, id): if id < 2495: return "Homogeneous" elif id < 5326: return "Speckled" elif id < 7924: return "Nucleolar" elif id < 10665: return "Centromere" elif id < 12873: return "NuMem" else: return "Golgi" def _split_generators(self, dl_manager): data_files = dl_manager.download_and_extract(_URL) files = dl_manager.iter_files([data_files]) dataset = [] for path in files: file_name = os.path.basename(path) if file_name.endswith(".png"): dataset.append( { "image": path, "label": self._ground_truth(int(file_name.split(".")[0])), } ) random.shuffle(dataset) data_count = len(dataset) p80 = int(data_count * 0.8) p90 = int(data_count * 0.9) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "files": dataset[:p80], }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "files": dataset[p80:p90], }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "files": dataset[p90:], }, ), ] def _generate_examples(self, files): for i, path in enumerate(files): yield i, path