--- license: mit task_categories: - question-answering language: - zh tags: - medical - tcm - traditional Chinese medicine - eval - benchmark - test --- # Description This dataset can be used to evaluate the capabilities of large language models in traditional Chinese medicine and contains multiple-choice, multiple-answer, and true/false questions. # Changelog - **2024-08-28: Added 7226 questions.** - 2024-08-09: The benchmark code is available at https://github.com/huangxinping/HWTCMBench. - 2024-08-02: System prompts are removed to ensure the purity of the evaluation results. - 2024-07-20: Debut. ## Examples multiple-answers questions(多选题) ```json [ { "instruction": "便秘的预防调护应注意\nA.保持心情舒畅\nB.少吃辛辣刺激性食物\nC.适当摄入油脂\nD.积极治疗肛门直肠疾病\nE.按时登厕", "input": "", "output": "ABCDE" } ] ``` multiple-choice questions(单选题) ```json [ { "instruction": "患者,男,50岁。眩晕欲仆,头摇而痛,项强肢颤,腰膝疫软,舌红苔薄白,脉弦有力。其病机是\nA.肝阳上亢\nB.肝肾阴虚\nC.肝阳化风\nD.阴虚风动\nE.肝血不足", "input": "", "output": "C" } ] ``` True/False questions(判断题) ```json [ { "instruction": "秦医医和提出了“六气病源说”。", "input": "", "output": "正确" }, { "instruction": "中风中经络邪盛时也可出现神志改变", "input": "", "output": "错误" } ] ``` ## Evaluation | | multiple-choice questions | multiple-answers questions | True/False questions | |---|---|---|---| | llama3:8b | 21.94% | 17.71% | 46.56% | | phi3:14b-instruct | 26.93% | 1.04% | 38.93% | | aya:8b | 17.85% | 1.04% | 34.35% | | mistral:7b-instruct | 21.76% | 2.08% | **48.09%** | | qwen1.5-7b-chat | 51.35% | 13.54% | 46.56% | | qwen1.5-14b-chat | 69.94% | **78.12%** | 31.30% | | huangdi-13b-chat | 21.73% | 45.83% | 0.00% | | canggong-14b-chat(SFT)
**Ours** | 55.98% | 4.17% | 23.66% | | canggong-14b-chat(DPO)
**Ours** | **72.33%** | 2.08% | 45.80% | > Canggong-14b-chat is an LLM of traditional Chinese medicine still in training. ## Citation If you find this project useful in your research, please consider cite: ``` @misc{hwtcm2024, title={{hwtcm} a traditional Chinese medicine QA dataset for evaluating large language models}, author={Haiwei AI Team}, howpublished = {\url{https://huggingface.co/datasets/Monor/hwtcm}}, year={2024} } ```