Mitsua's picture
Upload 15 files
fee5018 verified
import os
import shutil
import gc
import json
import pickle
import cv2
import numpy as np
from tqdm import tqdm
import threading
from concurrent.futures import ProcessPoolExecutor
from multi_fractal_db import ifs
from multi_fractal_db import serach_ifs_systems
from multi_fractal_db.multi_fractal_dataset import MultiFractalDataset
from multi_fractal_db.multi_fractal_generator import MultiGenerator
from PIL import Image
class Generator():
@classmethod
def get_params(cls, params_path):
# デバッグ表示
cls.debug = True
# Conner's FractalDBのパラメータ
with open(os.path.join(params_path, 'multi_fractal_ifs_params.json')) as f:
cls.ifs_params = json.load(f)
# IFSシステムの探索パラメータ
kwargs = dict(
# IFSシステム数
num_systems=cls.ifs_params["num_systems"],
# 連立方程式の数
n=(2, 4),
bval=1,
beta=None,
sample_fn=None,
)
# 全IFSシステムのパラメータ作成
sys = serach_ifs_systems.random_systems(**kwargs)
cls.ifs_systems = {'params': sys, 'hparams': kwargs}
print(f"ifs_systems length {len(cls.ifs_systems['params'])}")
# デバッグモード
cls.debug = True
return True
@classmethod
def generate(cls, out_path, start_index : int = None, end_index : int = None, jpeg_quality : int = 95):
if cls.debug:
print(out_path)
# MixUp元フォルダ作成
base_path = out_path.replace("pretrain", "base")
# クラス数
num_classes = cls.ifs_params['num_classes']
# 1クラスあたりの画像枚数
num_image_per_class = cls.ifs_params['num_image_per_class']
if start_index is None:
start_index = 0
if end_index is None:
end_index = num_classes
# 全クラス分の画像作成
for iclass in range(start_index, end_index):
print(f"iclass = {iclass:05}")
class_dir = os.path.join(out_path, f"{iclass:05}")
if os.path.exists(class_dir):
files = os.listdir(class_dir)
files = [f for f in files if f.endswith(".jpg")]
if len(files) == num_image_per_class:
print(f"this iclass already processed = {iclass:05}")
once_load_failed = False
for f in files:
path = os.path.join(class_dir, f)
try:
img = Image.open(path)
except:
once_load_failed = True
break
if not once_load_failed:
continue
else:
print(f"[RE] this iclass already processed = {iclass:05}, but file corrupted. ")
for f in files:
os.remove(os.path.join(class_dir, f))
else:
for f in files:
os.remove(os.path.join(class_dir, f))
base_images = []
# MixUp元ベースクラス作成
for ib, ibase in enumerate([iclass*2, iclass*2+1]):
# クラスフォルダ
# 1クラスあたりのIFSシステム数
num_systems_per_calss = cls.ifs_params['num_systems_per_calss']
# 使用するIFSシステムパラメータ
st = ibase * num_systems_per_calss
en = (ibase+1)*num_systems_per_calss
# print(f"ib={ib}, ibase={ibase}, st={st}, en={en}")
ifs_syss = {'params':cls.ifs_systems['params'][st:en],
'hparams': cls.ifs_systems['hparams']}
# chaceサイズ
#cache_size = num_systems_per_calss * num_image_per_class
cache_size = min(500, num_image_per_class*num_systems_per_calss)
# 別スレッドで実行
future = make_multi_fractal_images(
ifs_syss, cls.ifs_params, num_systems_per_calss,
num_image_per_class, cache_size, cls.debug, out_path, ibase)
base_images.append(future)
# MixUp画像作成
# クラスフォルダ
class_dir = os.path.join(out_path, f"{iclass:05}")
if os.path.exists(class_dir)==False:
os.makedirs(class_dir, exist_ok=True)
# 全画像作成
for idx in tqdm(range(num_image_per_class)):
# MixUp元画像の読み込み
image_base1 = base_images[0][idx]
image_base2 = base_images[1][idx]
# MixUp
alpha = 1.0
lam = np.clip(np.random.beta(alpha, alpha), 0.4, 0.6)
image_mixup = lam * image_base1 + (1 - lam) * image_base2
image_mixup = image_mixup.astype(np.uint8)
# 画像書き出し
image_file = os.path.join(class_dir, f"{idx:05}.jpg")
cv2.imwrite(image_file, image_mixup, [cv2.IMWRITE_JPEG_QUALITY, jpeg_quality])
# MixUp元フォルダの削除
base_images = None
del base_images
futures = None
del futures
gc.collect()
def make_multi_fractal_images(ifs_systems, ifs_params,
num_systems_per_calss, num_image_per_class, cache_size,
debug, out_path, ibase):
# Conner's Multi-FractalDB
multi_fractal_dataset = MultiFractalDataset(
ifs_params=ifs_systems,
num_systems=num_systems_per_calss,
num_class=1,
per_class=num_image_per_class,
generator=MultiGenerator(
color=ifs_params["color"],
background=ifs_params["background"],
niter=ifs_params["niter"],
patch=ifs_params["patch"],
n_objects=ifs_params["n_objects"],
size_range=ifs_params["size_range"],
jitter_params=ifs_params["jitter_params"],
cache_size=cache_size,
size=ifs_params["image_size"]
),
period=2)
if debug:
# 確認用フォルダ
check_dir = out_path.replace("pretrain", "check")
if os.path.exists(check_dir)==False:
os.makedirs(check_dir, exist_ok=True)
# 使用するIFSフラクタルを描画
for i, sys in enumerate(ifs_systems['params']):
image_gray = multi_fractal_dataset.generator.render(sys['system'])
image_gray = (image_gray * 255).astype(np.uint8)
#image_gray = cv2.applyColorMap(image_gray, cv2.COLORMAP_BONE)
image_file = os.path.join(check_dir, f"{ibase:05}_{i:02}.jpg")
cv2.imwrite(image_file, image_gray)
# 全画像数
base_images = []
num_fractal_images = len(multi_fractal_dataset)
class_dir = os.path.join(check_dir, f"{ibase:05}")
os.makedirs(class_dir, exist_ok=True)
for idx in range(num_fractal_images):
# 画像とラベルの取得
image, labels = multi_fractal_dataset[idx]
# 画像書き出し
image_file = os.path.join(class_dir, f"{idx:05}.png")
cv2.imwrite(image_file, image)
base_images.append(image)
# メモリ解放
multi_fractal_dataset = None
del multi_fractal_dataset
gc.collect()
return base_images
def multifractal_main(outputdir, start_index, end_index, jpeg_quality):
Generator.get_params('../params')
Generator.generate(outputdir, start_index, end_index, jpeg_quality)
if __name__ == "__main__":
import argparse
from tqdm import tqdm
from copy import deepcopy
import concurrent.futures
import time
from typing import List
import multiprocessing
worker_num=multiprocessing.cpu_count()
print("workers : ", worker_num)
parser = argparse.ArgumentParser()
parser.add_argument('--fpath', type=str, default="../output/pretrain")
parser.add_argument('--total', type=int, default=1000)
parser.add_argument('--step', type=int, default=1000//worker_num+1)
parser.add_argument('--offset', type=int, default=0)
parser.add_argument('--jpeg_quality', type=int, default=95)
args = parser.parse_args()
os.makedirs(args.fpath, exist_ok=True)
executor = concurrent.futures.ProcessPoolExecutor(max_workers=worker_num)
futures : List[concurrent.futures.Future] = []
for i in range(args.offset, args.total, args.step):
start_index = i
end_index = i + args.step
futures.append(executor.submit(multifractal_main, args.fpath, start_index, end_index, args.jpeg_quality))
for future in tqdm(concurrent.futures.as_completed(futures)):
try:
rr = future.result()
except Exception as exc:
print('generated an exception: %s' % (exc))
print("All done!")