""" NOTE: Major TOM standard does not require any specific type of thumbnail to be computed. Instead these are shared as optional help since this is how the Core dataset thumbnails have been computed. """ from rasterio.io import MemoryFile from PIL import Image import numpy as np import os from pathlib import Path import rasterio as rio from matplotlib.colors import LightSource def get_grayscale(x): """ Normalized grayscale visualisation """ # normalize x_n = x-x.min() x_n = x_n/x_n.max() return np.uint8(x_n*255) def get_hillshade(x, azdeg=315, altdeg=45,ve=1): """ Hillshade visualisation for DEM """ ls = LightSource(azdeg=azdeg, altdeg=altdeg) return np.uint8(255*ls.hillshade(x, vert_exag=ve)) def dem_thumbnail(dem, dem_NODATA = -32768.0, hillshade=True): """ Takes vv and vh numpy arrays along with the corresponding NODATA values (default is -32768.0) Returns a numpy array with the thumbnail """ if hillshade: return get_hillshade(dem) else: return get_grayscale(dem) def dem_thumbnail_from_datarow(datarow): """ Takes a datarow directly from one of the data parquet files Returns a PIL Image """ with MemoryFile(datarow['DEM'][0].as_py()) as mem_f: with mem_f.open(driver='GTiff') as f: dem=f.read().squeeze() dem_NODATA = f.nodata img = dem_thumbnail(dem, dem_NODATA) return Image.fromarray(img,'L') if __name__ == '__main__': from fsspec.parquet import open_parquet_file import pyarrow.parquet as pq print('[example run] reading file from HuggingFace...') url = "https://huggingface.co/datasets/Major-TOM/Core-DEM/resolve/main/images/part_01001.parquet" with open_parquet_file(url) as f: with pq.ParquetFile(f) as pf: first_row_group = pf.read_row_group(1) print('[example run] computing the thumbnail...') thumbnail = dem_thumbnail_from_datarow(first_row_group) thumbnail_fname = 'example_thumbnail.png' thumbnail.save(thumbnail_fname, format = 'PNG') print('[example run] saved as "{}"'.format(thumbnail_fname))