import io import itertools as it import numpy as np import datasets as d _DESCRIPTION = """\ The Dropjects dataset was created at the Chair of Cyber-Physical Systems in Production \ Engineering at the Technical University of Munich. """ SUBSETS = [ "omni", "cps", "linemod", "ycbv", "homebreweddb", "hope", "tless", ] NUM_SHARDS = { "cps": 1000, "ycbv": 1000, "linemod": 1000, "tless": 1000, "omni": 10_000, } BASE_PATH = "https://huggingface.co/datasets/LukasDb/dropjects/resolve/main/data/train/{subset}/{shard}.tar" h = 1440 w = 2560 class Dropjects(d.GeneratorBasedBuilder): BUILDER_CONFIGS = list(d.BuilderConfig(name=x) for x in SUBSETS) def _info(self): features = d.Features( { # TODO at least the resolution is different "rgb": d.Array3D((h, w, 3), dtype="uint8"), "rgb_R": d.Array3D((h, w, 3), dtype="uint8"), "depth": d.Array2D((h, w), dtype="float32"), "depth_R": d.Array2D((h, w), dtype="float32"), "mask": d.Array2D((h, w), dtype="int32"), "obj_ids": d.Sequence(d.Value("int32")), "obj_classes": d.Sequence(d.Value("string")), "obj_pos": d.Sequence(d.Sequence(d.Value("float32"))), "obj_rot": d.Sequence(d.Sequence(d.Value("float32"))), "obj_bbox_obj": d.Sequence(d.Sequence(d.Value("int32"))), "obj_bbox_visib": d.Sequence(d.Sequence(d.Value("int32"))), "cam_location": d.Sequence(d.Value("float32")), "cam_rotation": d.Sequence(d.Value("float32")), "cam_matrix": d.Array2D((3, 3), dtype="float32"), "obj_px_count_all": d.Sequence(d.Value("int32")), "obj_px_count_valid": d.Sequence(d.Value("int32")), "obj_px_count_visib": d.Sequence(d.Value("int32")), "obj_visib_fract": d.Sequence(d.Value("float32")), } ) return d.DatasetInfo( description=_DESCRIPTION, citation="", # TODO homepage="", # TODO license="cc", features=features, ) def _split_generators(self, dl_manager): subset = self.config.name archive_paths = [ BASE_PATH.format(subset=subset, shard=i) for i in range(NUM_SHARDS[subset]) ] downloaded = dl_manager.download(archive_paths) return [ d.SplitGenerator( name=d.Split.TRAIN, gen_kwargs={"tars": [dl_manager.iter_archive(d) for d in downloaded]}, ), ] def _generate_examples(self, tars): sample = {} id = None for tar in tars: for file_path, file_obj in tar: new_id = file_path.split(".")[0] if id is None: id = new_id else: if id != new_id: yield id, sample sample = {} id = new_id key = file_path.split(".")[1] bytes = io.BytesIO(file_obj.read()) value = np.load(bytes, allow_pickle=False) sample[key] = value