Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Portuguese
Size:
n<1K
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""HAREM dataset""" | |
from __future__ import absolute_import, division, print_function | |
import json | |
import logging | |
import unicodedata | |
from typing import List, Tuple | |
import datasets | |
_CITATION = """ | |
@inproceedings{santos2006harem, | |
title={Harem: An advanced ner evaluation contest for portuguese}, | |
author={Santos, Diana and Seco, Nuno and Cardoso, Nuno and Vilela, Rui}, | |
booktitle={quot; In Nicoletta Calzolari; Khalid Choukri; Aldo Gangemi; Bente Maegaard; Joseph Mariani; Jan Odjik; Daniel Tapias (ed) Proceedings of the 5 th International Conference on Language Resources and Evaluation (LREC'2006)(Genoa Italy 22-28 May 2006)}, | |
year={2006} | |
} | |
""" | |
_DESCRIPTION = """ | |
The HAREM is a Portuguese language corpus commonly used for Named Entity Recognition tasks. It includes about 93k words, from 129 different texts, | |
from several genres, and language varieties. The split of this dataset version follows the division made by [1], where 7% HAREM | |
documents are the validation set and the miniHAREM corpus (with about 65k words) is the test set. There are two versions of the dataset set, | |
a version that has a total of 10 different named entity classes (Person, Organization, Location, Value, Date, Title, Thing, Event, | |
Abstraction, and Other) and a "selective" version with only 5 classes (Person, Organization, Location, Value, and Date). | |
It's important to note that the original version of the HAREM dataset has 2 levels of NER details, namely "Category" and "Sub-type". | |
The dataset version processed here ONLY USE the "Category" level of the original dataset. | |
[1] Souza, Fábio, Rodrigo Nogueira, and Roberto Lotufo. "BERTimbau: Pretrained BERT Models for Brazilian Portuguese." Brazilian Conference on Intelligent Systems. Springer, Cham, 2020. | |
""" | |
_HOMEPAGE = "https://www.linguateca.pt/primeiroHAREM/harem_coleccaodourada_en.html" | |
_LICENSE = "" | |
_URLs = { | |
"default": { | |
"train": "https://raw.githubusercontent.com/neuralmind-ai/portuguese-bert/master/ner_evaluation/data/FirstHAREM-total-train.json", | |
"dev": "https://raw.githubusercontent.com/neuralmind-ai/portuguese-bert/master/ner_evaluation/data/FirstHAREM-total-dev.json", | |
"test": "https://raw.githubusercontent.com/neuralmind-ai/portuguese-bert/master/ner_evaluation/data/MiniHAREM-total.json", | |
}, | |
"selective": { | |
"train": "https://raw.githubusercontent.com/neuralmind-ai/portuguese-bert/master/ner_evaluation/data/FirstHAREM-selective-train.json", | |
"dev": "https://raw.githubusercontent.com/neuralmind-ai/portuguese-bert/master/ner_evaluation/data/FirstHAREM-selective-dev.json", | |
"test": "https://raw.githubusercontent.com/neuralmind-ai/portuguese-bert/master/ner_evaluation/data/MiniHAREM-selective.json", | |
}, | |
} | |
# method extracted from https://github.com/huggingface/transformers/blob/master/src/transformers/tokenization_utils.py#L77-L89 | |
def _is_punctuation(char): | |
"""Checks whether `char` is a punctuation character.""" | |
cp = ord(char) | |
# We treat all non-letter/number ASCII as punctuation. | |
# Characters such as "^", "$", and "`" are not in the Unicode | |
# Punctuation class but we treat them as punctuation anyways, for | |
# consistency. | |
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): | |
return True | |
cat = unicodedata.category(char) | |
if cat.startswith("P"): | |
return True | |
return False | |
# method extracted from https://github.com/huggingface/transformers/blob/master/src/transformers/tokenization_utils.py#L53-L62 | |
def _is_whitespace(char): | |
"""Checks whether `char` is a whitespace character.""" | |
# \t, \n, and \r are technically control characters but we treat them | |
# as whitespace since they are generally considered as such. | |
if char == " " or char == "\t" or char == "\n" or char == "\r": | |
return True | |
cat = unicodedata.category(char) | |
if cat == "Zs": | |
return True | |
return False | |
class Token: | |
"""Info about a single token.""" | |
def __init__(self, text: str, tail: str = ""): | |
if not isinstance(text, str) or not text: | |
raise TypeError("text should be a non-empty string.") | |
self.text = text | |
self.tail = tail | |
def __len__(self): | |
return len(self.text) + len(self.tail) | |
def __add__(self, char): | |
self.text += char | |
return self | |
def reconstruct_text_from_tokens(tokens: List[Token], include_last_tail: bool = False) -> str: | |
"""Concatenates the text of a sequence of tokens.""" | |
def text_generator(tokens): | |
for i, token in enumerate(tokens): | |
yield token.text | |
if i < len(tokens) - 1 or include_last_tail: | |
yield token.tail | |
return "".join(piece for piece in text_generator(tokens)) | |
def tokenize(text: str) -> Tuple[List[Token], List[int]]: | |
""" Perform whitespace and punctuation tokenization keeping track of char alignment""" | |
doc_tokens = [] | |
char_to_word_offset = [] | |
new_word = True | |
curr_token = None | |
def begin_new_token(doc_tokens, text): | |
token = Token(text=text) | |
doc_tokens.append(token) | |
return token | |
for offset, c in enumerate(text): | |
if _is_whitespace(c): | |
new_word = True | |
if curr_token: | |
curr_token.tail += c | |
else: | |
if _is_punctuation(c): | |
curr_token = begin_new_token(doc_tokens, c) | |
new_word = True | |
else: | |
if new_word: | |
curr_token = begin_new_token(doc_tokens, c) | |
else: | |
curr_token += c | |
new_word = False | |
# OBS: Whitespaces that appear before any tokens will have offset -1 | |
# char_to_word_offset.append(len(doc_tokens) - 1) | |
char_to_word_offset.append(max(0, len(doc_tokens) - 1)) | |
return doc_tokens, char_to_word_offset | |
class HAREM(datasets.GeneratorBasedBuilder): | |
"""HAREM dataset.""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="default", | |
version=VERSION, | |
description="All the tags (PESSOA, ORGANIZACAO, LOCAL, TEMPO, VALOR, ABSTRACCAO, ACONTECIMENTO, COISA, OBRA, OUTRO) will be used", | |
), | |
datasets.BuilderConfig( | |
name="selective", | |
version=VERSION, | |
description="Only a subset of the tags (PESSOA, ORGANIZACAO, LOCAL, TEMPO, VALOR) will be used", | |
), | |
] | |
DEFAULT_CONFIG_NAME = "default" | |
def _info(self): | |
tags = [ | |
"O", | |
"B-PESSOA", | |
"I-PESSOA", | |
"B-ORGANIZACAO", | |
"I-ORGANIZACAO", | |
"B-LOCAL", | |
"I-LOCAL", | |
"B-TEMPO", | |
"I-TEMPO", | |
"B-VALOR", | |
"I-VALOR", | |
] | |
if self.config.name == "default": | |
tags += [ | |
"B-ABSTRACCAO", | |
"I-ABSTRACCAO", | |
"B-ACONTECIMENTO", | |
"I-ACONTECIMENTO", | |
"B-COISA", | |
"I-COISA", | |
"B-OBRA", | |
"I-OBRA", | |
"B-OUTRO", | |
"I-OUTRO", | |
] | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence(datasets.features.ClassLabel(names=tags)), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
my_urls = _URLs[self.config.name] | |
data_dir = dl_manager.download_and_extract(my_urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": data_dir["train"], "split": "train"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": data_dir["test"], "split": "test"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": data_dir["dev"], "split": "dev"}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
""" Yields examples. """ | |
logging.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, "r", encoding="utf-8") as f: | |
input_data = json.load(f) | |
id_ = 0 | |
for document in input_data: | |
doc_text = document["doc_text"] | |
doc_id = document["doc_id"] | |
doc_tokens, char_to_word_offset = tokenize(doc_text) | |
tags = ["O"] * len(doc_tokens) | |
def set_label(index, tag): | |
if tags[index] != "O": | |
logging.warning( | |
"Overwriting tag %s at position %s to %s", | |
tags[index], | |
index, | |
tag, | |
) | |
tags[index] = tag | |
for entity in document["entities"]: | |
entity_text = entity["text"] | |
entity_type = entity["label"] | |
start_token = None | |
end_token = None | |
entity_start_offset = entity["start_offset"] | |
entity_end_offset = entity["end_offset"] | |
start_token = char_to_word_offset[entity_start_offset] | |
# end_offset is NOT inclusive to the text, e.g., | |
# entity_text == doc_text[start_offset:end_offset] | |
end_token = char_to_word_offset[entity_end_offset - 1] | |
assert start_token <= end_token, "End token cannot come before start token." | |
reconstructed_text = reconstruct_text_from_tokens(doc_tokens[start_token : (end_token + 1)]) | |
assert ( | |
entity_text.strip() == reconstructed_text | |
), "Entity text and reconstructed text are not equal: %s != %s" % ( | |
entity_text, | |
reconstructed_text, | |
) | |
for token_index in range(start_token, end_token + 1): | |
if token_index == start_token: | |
tag = "B-" + entity_type | |
else: | |
tag = "I-" + entity_type | |
set_label(token_index, tag) | |
yield id_, { | |
"id": doc_id, | |
"tokens": [x.text for x in doc_tokens], | |
"ner_tags": tags, | |
} | |
id_ += 1 | |