import numpy as np import pandas as pd from tqdm import tqdm def dcg(scores): log2_i = np.log2(np.arange(2, len(scores) + 2)) return np.sum(scores / log2_i) def idcg(rels, topk): return dcg(np.sort(rels)[::-1][:topk]) def odcg(rels, predictions): indices = np.argsort(predictions)[::-1] return dcg(rels[indices]) def _ndcg(drels, dpredictions): topk = len(dpredictions) _idcg = idcg(np.array(drels['score']), topk) tmp = drels[drels.index.isin(dpredictions.index)] rels = dpredictions['score'].copy() rels *= 0 rels.update(tmp['score']) _odcg = odcg(rels.values, dpredictions['score'].values) return float(_odcg / _idcg) def ndcg(qrels, results): drels = qrels.set_index('cid', inplace=False) dpredictions = results.set_index('cid', inplace=False) # print(drels, dpredictions) return _ndcg(drels, dpredictions) def ndcg_in_all(qrels, results): retn = {} _qrels = {qid: group for qid, group in qrels.groupby('qid')} _results = {qid: group for qid, group in results.groupby('qid')} for qid in tqdm(_qrels, desc="计算 ndcg 中..."): retn[qid] = ndcg(_qrels[qid], _results[qid]) return retn if __name__ == '__main__': qrels = pd.DataFrame( [ ['q1', 'd1', 1], ['q1', 'd2', 2], ['q1', 'd3', 3], ['q1', 'd4', 4], ['q2', 'd1', 2], ['q2', 'd2', 1] ], columns=['qid', 'cid', 'score'] ) results = pd.DataFrame( [ ['q1', 'd2', 1], ['q1', 'd3', 2], ['q1', 'd4', 3], ['q2', 'd2', 1], ['q2', 'd3', 2], ['q2', 'd5', 2] ], columns=['qid', 'cid', 'score'] ) print(ndcg_in_all(qrels, results))