"""Graptoloidea Specimens dataset.""" import os import random from typing import List import datasets import pandas as pd import numpy as np import csv import logging from PIL import Image import ast _CITATION = """\ 111 """ _DESCRIPTION = """\ [Your dataset description here...] """ _HOMEPAGE = "https://zenodo.org/records/6194943" _license = "111" class GraptoloideaSpecimensDataset(datasets.GeneratorBasedBuilder): _URL = "https://raw.githubusercontent.com/LeoZhangzaolin/photos/main/Final_GS_with_Images.csv" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "Suborder": datasets.Value("string"), "Infraorder": datasets.Value("string"), "Family (Subfamily)": datasets.Value("string"), "Genus": datasets.Value("string"), "Tagged Species Name": datasets.Value("string"), "Image": datasets.Value("string"), "Stage": datasets.Value("string"), "Mean Age Value": datasets.Value("float64"), "Locality (Longitude, Latitude, Horizon)": datasets.Value("string"), "Reference (Specimens Firstly Published)": datasets.Value("string"), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloaded_file = dl_manager.download_and_extract(self._URL) # Read the CSV file df = pd.read_csv(downloaded_file) df = df.sample(frac=1).reset_index(drop=True) # Shuffle the dataset # Splitting the dataset train_size = int(0.7 * len(df)) test_size = int(0.15 * len(df)) train_df = df[:train_size] test_df = df[train_size:train_size + test_size] validation_df = df[train_size + test_size:] # Save split dataframes to temporary CSV files train_file = '/tmp/train_split.csv' test_file = '/tmp/test_split.csv' validation_file = '/tmp/validation_split.csv' train_df.to_csv(train_file, index=False) test_df.to_csv(test_file, index=False) validation_df.to_csv(validation_file, index=False) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_file}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_file}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_file}), ] def _generate_examples(self, filepath): """This function returns the examples from the CSV file.""" logging.info("generating examples from = %s", filepath) with open(filepath, encoding='utf-8') as f: reader = csv.DictReader(f) key = 0 for row in reader: key += 1 # Extracting data from each column suborder = row['Suborder'].strip() infraorder = row['Infraorder'].strip() family_subfamily = row['Family (Subfamily)'].strip() genus = row['Genus'].strip() species_name = row['tagged species name'].strip() image = row['image'].strip() stage = row['Stage'].strip() mean_age = row['mean age value'] locality = row['Locality (Longitude, Latitude, Horizon)'].strip() reference = row['Reference (specimens firstly published)'].strip() # Constructing the example yield key, { "Suborder": suborder, "Infraorder": infraorder, "Family (Subfamily)": family_subfamily, "Genus": genus, "Tagged Species Name": species_name, "Image": image, "Stage": stage, "Mean Age Value": mean_age, "Locality (Longitude, Latitude, Horizon)": locality, "Reference (Specimens Firstly Published)": reference, }