{ "cells": [ { "cell_type": "code", "execution_count": 2, "id": "1a3ffbc9", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import os\n", "import gc\n", "import json\n", "import cv2\n", "from tqdm.auto import tqdm\n", "from HCFA_OCR_XML_to_DataFrame import *" ] }, { "cell_type": "code", "execution_count": 3, "id": "8467e426", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "34" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import warnings\n", "warnings.filterwarnings('ignore')\n", "warnings.simplefilter('ignore')\n", "gc.collect()" ] }, { "cell_type": "code", "execution_count": 4, "id": "f8c63fa3", "metadata": {}, "outputs": [], "source": [ "HCFA_final_keys = pd.read_excel(r\"D:\\Xelp_work\\FSL Project\\Sprint_2\\HCFA_Keys_list_verification.xlsx\", sheet_name = 'Field_Names from KEY file')" ] }, { "cell_type": "code", "execution_count": 6, "id": "f24fa208", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "157" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "key_names = HCFA_final_keys['Key_Name'].tolist()\n", "len(key_names)" ] }, { "cell_type": "code", "execution_count": 7, "id": "32b3d5d5", "metadata": {}, "outputs": [], "source": [ "def generate_ground_truth(row):\n", " ground_truth = ''\n", " try:\n", " if \"?\" not in str(row[\"OCR_Optimizer\"]):\n", " ground_truth = row[\"OCR_Optimizer\"]\n", " else:\n", " ground_truth = row[\"Data\"]\n", " except:\n", " ground_truth = row[\"Data\"]\n", " return ground_truth" ] }, { "cell_type": "code", "execution_count": null, "id": "edc973bb", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 8, "id": "1eec6362", "metadata": {}, "outputs": [], "source": [ "folder_path = r\"D:\\Xelp_work\\FSL Project\\Sprint_2\\HCFA_data\\train\\key\"" ] }, { "cell_type": "code", "execution_count": 11, "id": "a409aab1", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import gc\n", "gc.collect()" ] }, { "cell_type": "code", "execution_count": 14, "id": "69a5ae0a", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a7f75da0fab544f8a81ecde645b6a492", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/27919 [00:00 14\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[0;32m 15\u001b[0m c \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[0;32m 16\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m c \u001b[38;5;241m%\u001b[39m \u001b[38;5;241m100\u001b[39m \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n", "Cell \u001b[1;32mIn[14], line 12\u001b[0m\n\u001b[0;32m 10\u001b[0m df[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mImage_Name\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m images \u001b[38;5;241m*\u001b[39m \u001b[38;5;28mlen\u001b[39m(df)\n\u001b[0;32m 11\u001b[0m df[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mXML_File\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m filename\n\u001b[1;32m---> 12\u001b[0m overal_data \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mconcat([overal_data, df], ignore_index\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m 13\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 14\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n", "File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\core\\reshape\\concat.py:385\u001b[0m, in \u001b[0;36mconcat\u001b[1;34m(objs, axis, join, ignore_index, keys, levels, names, verify_integrity, sort, copy)\u001b[0m\n\u001b[0;32m 370\u001b[0m copy \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[0;32m 372\u001b[0m op \u001b[38;5;241m=\u001b[39m _Concatenator(\n\u001b[0;32m 373\u001b[0m objs,\n\u001b[0;32m 374\u001b[0m axis\u001b[38;5;241m=\u001b[39maxis,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 382\u001b[0m sort\u001b[38;5;241m=\u001b[39msort,\n\u001b[0;32m 383\u001b[0m )\n\u001b[1;32m--> 385\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m op\u001b[38;5;241m.\u001b[39mget_result()\n", "File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\core\\reshape\\concat.py:616\u001b[0m, in \u001b[0;36m_Concatenator.get_result\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 612\u001b[0m indexers[ax] \u001b[38;5;241m=\u001b[39m obj_labels\u001b[38;5;241m.\u001b[39mget_indexer(new_labels)\n\u001b[0;32m 614\u001b[0m mgrs_indexers\u001b[38;5;241m.\u001b[39mappend((obj\u001b[38;5;241m.\u001b[39m_mgr, indexers))\n\u001b[1;32m--> 616\u001b[0m new_data \u001b[38;5;241m=\u001b[39m concatenate_managers(\n\u001b[0;32m 617\u001b[0m mgrs_indexers, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnew_axes, concat_axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbm_axis, copy\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcopy\n\u001b[0;32m 618\u001b[0m )\n\u001b[0;32m 619\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcopy \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m using_copy_on_write():\n\u001b[0;32m 620\u001b[0m new_data\u001b[38;5;241m.\u001b[39m_consolidate_inplace()\n", "File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\pandas\\core\\internals\\concat.py:232\u001b[0m, in \u001b[0;36mconcatenate_managers\u001b[1;34m(mgrs_indexers, axes, concat_axis, copy)\u001b[0m\n\u001b[0;32m 226\u001b[0m vals \u001b[38;5;241m=\u001b[39m [ju\u001b[38;5;241m.\u001b[39mblock\u001b[38;5;241m.\u001b[39mvalues \u001b[38;5;28;01mfor\u001b[39;00m ju \u001b[38;5;129;01min\u001b[39;00m join_units]\n\u001b[0;32m 228\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m blk\u001b[38;5;241m.\u001b[39mis_extension:\n\u001b[0;32m 229\u001b[0m \u001b[38;5;66;03m# _is_uniform_join_units ensures a single dtype, so\u001b[39;00m\n\u001b[0;32m 230\u001b[0m \u001b[38;5;66;03m# we can use np.concatenate, which is more performant\u001b[39;00m\n\u001b[0;32m 231\u001b[0m \u001b[38;5;66;03m# than concat_compat\u001b[39;00m\n\u001b[1;32m--> 232\u001b[0m values \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mconcatenate(vals, axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[0;32m 233\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 234\u001b[0m \u001b[38;5;66;03m# TODO(EA2D): special-casing not needed with 2D EAs\u001b[39;00m\n\u001b[0;32m 235\u001b[0m values \u001b[38;5;241m=\u001b[39m concat_compat(vals, axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n", "File \u001b[1;32m<__array_function__ internals>:200\u001b[0m, in \u001b[0;36mconcatenate\u001b[1;34m(*args, **kwargs)\u001b[0m\n", "\u001b[1;31mMemoryError\u001b[0m: Unable to allocate 26.0 MiB for an array with shape (1, 3408809) and data type object" ] } ], "source": [ "c = 0\n", "overal_data = pd.DataFrame()\n", "for filename in tqdm(os.listdir(folder_path)):\n", " if filename.endswith(\".KEY\"):\n", " file_path = os.path.join(folder_path, filename)\n", " try:\n", " df, single_fields, grp_field_names, table_field_names, images = OCR_XML_to_DataFrame(file_path, key_names)\n", " df[\"Ground_truth\"] = df.apply(generate_ground_truth, axis=1)\n", " df.replace(to_replace=[None], value='[BLANK]', inplace=True)\n", " df[\"Image_Name\"] = images * len(df)\n", " df[\"XML_File\"] = filename\n", " overal_data = pd.concat([overal_data, df], ignore_index=True)\n", " except Exception as e:\n", " raise e\n", " c += 1\n", " if c % 100 == 0:\n", " gc.collect()" ] }, { "cell_type": "code", "execution_count": null, "id": "c72f8d6f", "metadata": {}, "outputs": [], "source": [ "overal_data.to_excel(\"HCFA_BSC_Test_GRND_T_from XML.xlsx\", index=False)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 5 }