$O(n^{2})$
$f$
$n$
$G(v)$
$s_{o}\oplus s_{a}\in\mathbb{V}^{n+m}$
$Z\in\mathbb{R}^{m\times d_{\text{token}}}$
$E_{\psi}(s)$
$\displaystyle=F^{i}(E_{\psi}(s_{o})\oplus\text{Proj}_{\psi}(Z)).$
$\displaystyle\cos(v,v_{t}^{image})+\lambda\cos(v,v_{t}^{text})$
$\cos(\psi_{i},\psi_{j})$
${}^{4}$
$v_{t}^{text}=F^{t}(E_{\psi}(s^{\prime}))$
${}^{*}$
$\displaystyle\text{argmax}_{Z}$
$\rightarrow$
$\mathcal{A}(x,t,s_{o})$
$\displaystyle=F^{i}(E_{\psi}(s_{o}\oplus s_{a}))$
${}^{1}$
$\text{Proj}_{\psi}(Z)_{i}=Z_{i}+\text{sg}(\psi_{j}-Z_{i})$
$x_{t}$
$500\times 20=10000$
$w_{i},w_{j}$
$v_{t}^{image}\leftarrow F^{i}(x_{t})$
$m=4$
$s_{a}=E_{\psi}^{-1}(\text{Proj}_{\psi}(Z))$
${}^{5}$
$Z_{i}$
${}^{1,*}$
$\text{Proj}_{\psi}(Z)$
$s$
$\displaystyle\text{argmax}_{s_{a}}$
$t$
$s^{\prime}\leftarrow$
$v_{t}^{image}$
$5\times 4\times 100=2000$
${}^{1,2}$
$\psi\in\mathbb{R}^{|\mathbb{V}|\times d_{\text{token}}}$
$bestloss\leftarrow\mathcal{L},bestZ\leftarrow Z$
$G$
$\lambda=0$
$\text{Proj}_{\psi}:\mathbb{R}^{m\times d_{\text{token}}}\rightarrow\mathbb{R}^% {m\times d_{\text{token}}}$
$i\leftarrow 1$
$s\in\mathbb{V}^{*}$
$\displaystyle\text{argmax}_{s_{a}}\mathbb{E}_{x\sim G(F^{t}(E_{\psi}(s_{o}% \oplus s_{a})))}\mathcal{A}(x,t,s_{o})~{},$
$\displaystyle\cos(v,v_{t}^{image})+\lambda\cos(v,v_{t}^{text}),$
$\cos(a,b)=\frac{a^{T}b}{\|a\|\|b\|}$
$\eta$
$512\times 512$
$x$
$E_{\psi}(s_{o}\oplus s_{a})=E_{\psi}(s_{o})\oplus E_{\psi}(s_{a})$
$N$
$bestloss>\mathcal{L}$
$v_{t}^{image}=F^{i}(x_{t})$
$d_{\text{emb}}$
$\displaystyle\text{argmax}_{s_{a}}\cos(F^{i}(E_{\psi}(s_{o}\oplus s_{a})),v_{t% }).$
$s^{\prime}=$
${}^{3,*}$
$Z\leftarrow Z-\eta\nabla_{Z}\mathcal{L}$
$100$
$s_{a}$
$s_{o}\oplus s_{a}$
$m$
$v$
$\displaystyle\text{s.t.}\quad v=F^{i}(E_{\psi}(s_{o}\oplus s_{a})),$
$\mathbb{V}=\{w_{1},w_{2},\cdots,w_{|\mathbb{V}|}\}$
$F^{i}$
$\psi$
$\displaystyle\text{s.t.}\quad v$
$s_{o}$
$F^{t}$
${}^{2}$
$\oplus$
$E_{\psi}(s)_{i}=\psi_{j}$
$5\times 4=20$
$3\times 100$
${}^{3}$
$v\leftarrow F^{t}(E_{\psi}(s_{o})\oplus\text{Proj}_{\psi}(Z))$
$\mathcal{L}=-\cos(v,v_{t}^{image})-\lambda\cos(v,v_{t}^{text})$
$s_{o}\in\mathbb{V}^{n}$
$s_{a}\leftarrow E_{\psi}^{-1}(\text{Proj}_{\psi}(bestZ))$
$bestloss\leftarrow\infty,bestZ\leftarrow Z$
$\displaystyle=F^{i}(E_{\psi}(s_{o}\oplus E_{\psi}^{-1}(\text{Proj}_{\psi}(Z))))$
$t\in\mathbb{V}$
$Z$
$(\cdot)$
$x\sim G(v)$
$d_{\text{token}}$
$s_{a}\in\mathbb{V}^{m}$
$v_{t}$
$\lambda$
$\mathbb{V}$
$w_{j}=s_{i}$
$t\in\mathcal{V}$
$x\sim G(F^{t}(E_{\psi}(s)))$
$E_{\psi}$
$j=\text{argmin}_{j^{\prime}}\|\psi_{j^{\prime}}-Z_{i}\|_{2}^{2}$
$|s|\times d_{\text{token}}$
$\displaystyle\text{argmax}_{v_{t}}\mathbb{E}_{x\sim G(v_{t})}\mathcal{A}(x,t,s% _{o})~{}.$
$E_{L}\cup E_{R}$
$E_{L}=\{(u,w)|(u,w)\in E,w\neq v\}$