import spacy from numpy import char from spacy.tokens import Doc, DocBin train_dane = "/Users/au561649/Github/DaCy/training/main/corpus/dane/train.spacy" dev_dane = "/Users/au561649/Github/DaCy/training/main/corpus/dane/dev.spacy" test_dane = "/Users/au561649/Github/DaCy/training/main/corpus/dane/test.spacy" nlp = spacy.blank("da") # train, dev, test = dane() train_docs = list(DocBin().from_disk(train_dane).get_docs(nlp.vocab)) dev_docs = list(DocBin().from_disk(dev_dane).get_docs(nlp.vocab)) test_docs = list(DocBin().from_disk(test_dane).get_docs(nlp.vocab)) Doc.set_extension("split", default=None) for split, nam in zip([train_docs, dev_docs, test_docs], ["train", "dev", "test"]): for doc in split: doc._.split = nam # text2doc = {} # n_duplicates = 0 # all looks like non-actual duplicates (e.g. "stk. 2") # for i, doc in enumerate(test_docs + train_docs + dev_docs): # if doc.text in text2doc: # print(f"Duplicate found: {doc.text}") # print("split:": doc._.split) # n_duplicates += 1 # text2doc[doc.text] = doc # load daneplus path_to_data = "/Users/au561649/Github/DaCy/training/dane_plus/train.spacy" train_data = DocBin().from_disk(path_to_data) daneplus_docs = list(train_data.get_docs(nlp.vocab)) text2doc = {} n_duplicates = 0 # No duplicates (prodigy removed them - this will be problematic when reconstructing the documents - so therefore we re-annotate the dane documents) for i, doc in enumerate(daneplus_docs): if doc.text in text2doc: print(f"Duplicate found: {doc.text}") n_duplicates += 1 text2doc[doc.text] = doc # Add the daneplus annotations to the dane documents docs_to_fix = [] for doc in train_docs + dev_docs + test_docs: if doc.text in text2doc: _ents_to_add = text2doc[doc.text].ents ents_to_add = [] for ent in _ents_to_add: char_span = doc.char_span(ent.start_char, ent.end_char, label=ent.label_) if char_span is None: print(f"Entity could not be added: {ent.text}") docs_to_fix.append((doc, ent)) continue ents_to_add.append(char_span) doc.ents = ents_to_add # type: ignore # manual fixes (due to difference in tokenization) doc, ent = docs_to_fix[0] ents = list(doc.ents) _ent = doc[-2:-1] new_ent = doc.char_span(_ent.start_char, _ent.end_char, label=ent.label_) print("added", new_ent, "to", doc.text) ents.append(new_ent) doc.ents = ents doc, ent = docs_to_fix[1] ents = list(doc.ents) _ent = doc[-3:-1] new_ent = doc.char_span(_ent.start_char, _ent.end_char, label=ent.label_) ents.append(new_ent) doc.ents = ents print("added", new_ent, "to", doc.text) doc, ent = docs_to_fix[2] ents = list(doc.ents) _ent = doc[-3:-1] new_ent = doc.char_span(_ent.start_char, _ent.end_char, label=ent.label_) ents.append(new_ent) doc.ents = ents print("added", new_ent, "to", doc.text) doc, ent = docs_to_fix[3] ents = list(doc.ents) _ent = doc[-3:-1] new_ent = doc.char_span(_ent.start_char, _ent.end_char, label=ent.label_) ents.append(new_ent) doc.ents = ents print("added", new_ent, "to", doc.text) doc, ent = docs_to_fix[4] ents = list(doc.ents) _ent = doc[-3:-1] new_ent = doc.char_span(_ent.start_char, _ent.end_char, label=ent.label_) ents.append(new_ent) doc.ents = ents print("added", new_ent, "to", doc.text) doc, ent = docs_to_fix[5] ents = list(doc.ents) _ent = doc[-3:-1] new_ent = doc.char_span(_ent.start_char, _ent.end_char, label=ent.label_) ents.append(new_ent) doc.ents = ents print("added", new_ent, "to", doc.text) # Save the new documents new_train = DocBin(docs=train_docs) new_dev = DocBin(docs=dev_docs) new_test = DocBin(docs=test_docs) new_train.to_disk("train.spacy") new_dev.to_disk("dev.spacy") new_test.to_disk("test.spacy")