import os import json import datasets from datasets import BuilderConfig, Features, ClassLabel, Value, Sequence _DESCRIPTION = """ # 한국어 지시학습 데이터셋 - glue 데이터셋을 한국어로 변역한 데이터셋 """ _CITATION = """ @inproceedings{KITD, title={언어 번역 모델을 통한 한국어 지시 학습 데이터 세트 구축}, author={임영서, 추현창, 김산, 장진예, 정민영, 신사임}, booktitle={제 35회 한글 및 한국어 정보처리 학술대회}, pages={591--595}, month=oct, year={2023} } """ # glue _COLA_FEATURES = Features({ "data_index_by_user": Value(dtype="int32"), "label": Value(dtype="int32"), "sentence": Value(dtype="string"), }) def _parsing_cola(file_path): with open(file_path, mode="r") as f: dataset = json.load(f) for _idx, data in enumerate(dataset): _data_index_by_user = data["data_index_by_user"] _label = data["label"] _sentence = data["sentence"] yield _idx, { "data_index_by_user": _data_index_by_user, "label": _label, "sentence": _sentence } _MRPC_FEATURES = Features({ "data_index_by_user": Value(dtype="int32"), "sentence1": Value(dtype="string"), "sentence2": Value(dtype="string"), "label": Value(dtype="int32"), "idx": Value(dtype="int32") }) def _parsing_mrpc(file_path): with open(file_path, mode="r") as f: dataset = json.load(f) for _i, data in enumerate(dataset): _data_index_by_user = data["data_index_by_user"] _sentence1 = data["sentence1"] _sentence2 = data["sentence2"] _label = data["label"] _idx = data["idx"] yield _i, { "data_index_by_user": _data_index_by_user, "sentence1": _sentence1, "sentence2": _sentence2, "label": _label, "idx": _idx, } _QNLI_FEATURES = Features({ "data_index_by_user": Value(dtype="int32"), "label": Value(dtype="int32"), "question": Value(dtype="string"), "sentence": Value(dtype="string"), }) def _parsing_qnli(file_path): with open(file_path, mode="r") as f: dataset = json.load(f) for _idx, data in enumerate(dataset): _data_index_by_user = data["data_index_by_user"] _label = data["label"] _question = data["question"] _sentence = data["sentence"] yield _idx, { "data_index_by_user": _data_index_by_user, "label": _label, "question": _question, "sentence": _sentence, } _QQP_FEATURES = Features({ "data_index_by_user": Value(dtype="int32"), "question1": Value(dtype="string"), "question2": Value(dtype="string"), "label": Value(dtype="int32"), "idx": Value(dtype="int32") }) def _parsing_qqp(file_path): with open(file_path, mode="r") as f: dataset = json.load(f) for _i, data in enumerate(dataset): _data_index_by_user = data["data_index_by_user"] _question1 = data["question1"] _question2 = data["question2"] _label = data["label"] _idx = data["idx"] yield _i, { "data_index_by_user": _data_index_by_user, "question1": _question1, "question2": _question2, "label": _label, "idx": _idx, } _WNLI_FEATURES = Features({ "data_index_by_user": Value(dtype="int32"), "sentence1": Value(dtype="string"), "sentence2": Value(dtype="string"), "label": Value(dtype="int32"), "idx": Value(dtype="int32") }) def _parsing_wnli(file_path): with open(file_path, mode="r") as f: dataset = json.load(f) for _i, data in enumerate(dataset): _data_index_by_user = data["data_index_by_user"] _sentence1 = data["sentence1"] _sentence2 = data["sentence2"] _label = data["label"] _idx = data["idx"] yield _i, { "data_index_by_user": _data_index_by_user, "sentence1": _sentence1, "sentence2": _sentence2, "label": _label, "idx": _idx, } class GlueConfig(BuilderConfig): def __init__(self, name, feature, reading_fn, parsing_fn, citation, **kwargs): super(GlueConfig, self).__init__( name = name, version=datasets.Version("1.0.0"), **kwargs) self.feature = feature self.reading_fn = reading_fn self.parsing_fn = parsing_fn self.citation = citation class GLUE(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ GlueConfig( name = "cola", data_dir = "./glue", feature = _COLA_FEATURES, reading_fn = _parsing_cola, parsing_fn = lambda x:x, citation = _CITATION, ), GlueConfig( name = "mrpc", data_dir = "./glue", feature = _MRPC_FEATURES, reading_fn = _parsing_mrpc, parsing_fn = lambda x:x, citation = _CITATION, ), GlueConfig( name = "qnli", data_dir = "./glue", feature = _QNLI_FEATURES, reading_fn = _parsing_qnli, parsing_fn = lambda x:x, citation = _CITATION, ), GlueConfig( name = "qqp", data_dir = "./glue", feature = _QQP_FEATURES, reading_fn = _parsing_qqp, parsing_fn = lambda x:x, citation = _CITATION, ), GlueConfig( name = "wnli", data_dir = "./glue", feature = _WNLI_FEATURES, reading_fn = _parsing_wnli, parsing_fn = lambda x:x, citation = _CITATION, ), ] def _info(self) -> datasets.DatasetInfo: """Returns the dataset metadata.""" return datasets.DatasetInfo( description=_DESCRIPTION, features=self.config.feature, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager): """Returns SplitGenerators""" if self.config.name == "qqp": path_kv = { datasets.Split.TRAIN:[ os.path.join(dl_manager.manual_dir, f"{self.config.name}/train.json") ], } else: path_kv = { datasets.Split.TRAIN:[ os.path.join(dl_manager.manual_dir, f"{self.config.name}/train.json") ], datasets.Split.VALIDATION:[ os.path.join(dl_manager.manual_dir, f"{self.config.name}/validation.json") ], datasets.Split.TEST:[ os.path.join(dl_manager.manual_dir, f"{self.config.name}/test.json") ], } return [ datasets.SplitGenerator(name=k, gen_kwargs={"path_list": v}) for k, v in path_kv.items() ] def _generate_examples(self, path_list): """Yields examples.""" for path in path_list: try: for example in iter(self.config.reading_fn(path)): yield self.config.parsing_fn(example) except Exception as e: print(e)