--- license: apache-2.0 language: - el pipeline_tag: summarization task_categories: - summarization - text-generation - text2text-generation tags: - GreekNLP - Text Summarization - Text Generation - Title Generation - Greek - Wikipedia pretty_name: Greek Wikipedia size_categories: - 10K ### Supported Tasks and Leaderboards This dataset supports: **Text summarization:** Given the text of an article, a text generation model learns to generate an abstractive summary. **Title Generation:** Given the text of an article, a text generation model learns to generate a post title. ### Languages All articles are written in Greek. ## Dataset Structure ### Data Instances The dataset is structured as a `.csv` file, while three dataset splits are provided (train, validation and test). ### Data Fields The following data fields are provided for each split: `title`: (**str**) A short title. `article`: (**str**) The full text of the article. `summary`: (**str**): The abstractive summary of the article. `url`: (**str**) The URL which links to the original unprocessed article. ### Data Splits |Split|No of Documents| |-------------------|------------------------------------| |Train|83,432| |Validation|5000| |Test|5000| ### Example code ```python from datasets import load_dataset # Load the training, validation and test dataset splits. train_split = load_dataset('IMISLab/GreekWikipedia', split = 'train') validation_split = load_dataset('IMISLab/GreekWikipedia', split = 'validation') test_split = load_dataset('IMISLab/GreekWikipedia', split = 'test') print(test_split[0]) ``` ## Contact If you have any questions/feedback about the dataset please e-mail one of the following authors: ``` giarelis@ceid.upatras.gr cmastrokostas@ac.upatras.gr karacap@upatras.gr ``` ## Citation ``` @inproceedings{giarelis2024greek, title={Greek Wikipedia: A Study on Abstractive Summarization}, author={Giarelis, Nikolaos and Mastrokostas, Charalampos and Karacapilidis, Nikos}, booktitle={Proceedings of the 13th Hellenic Conference on Artificial Intelligence}, pages={1--11}, year={2024} } ```