# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Dungeons and Data: A Large-Scale NetHack Dataset. """ import glob import h5py import json import os import datasets from datasets.download.streaming_download_manager import xopen _CITATION = """\ """ _DESCRIPTION = """\ 3 billion state-action-score transitions from 100,000 trajectories collected from the symbolic bot winner of the NetHack Challenge 2021. """ _HOMEPAGE = "" _LICENSE = "" class NLEDataset(datasets.GeneratorBasedBuilder): """Dungeons and Data: A Large-Scale NetHack Dataset.""" VERSION = datasets.Version("1.0.0") DEFAULT_CONFIG_NAME = "mon-hum-neu" def _info(self): features = datasets.Features( { "data": { "tty_chars": datasets.Array3D(shape=(None, 24, 80), dtype="uint8"), "tty_colors": datasets.Array3D(shape=(None, 24, 80), dtype="int8"), "tty_cursor": datasets.Array2D(shape=(None, 2), dtype="int16"), "actions": datasets.Sequence(datasets.Value("int16")), "rewards": datasets.Sequence(datasets.Value("int32")), "dones": datasets.Sequence(datasets.Value("bool")), }, "metadata": { "gameid": datasets.Value("int32"), "version": datasets.Value("string"), "points": datasets.Value("int32"), "deathdnum": datasets.Value("int32"), "deathlev": datasets.Value("int32"), "maxlvl": datasets.Value("int32"), "hp": datasets.Value("int32"), "maxhp": datasets.Value("int32"), "deaths": datasets.Value("int32"), "deathdate": datasets.Value("int32"), "birthdate": datasets.Value("int32"), "uid": datasets.Value("int32"), "role": datasets.Value("string"), "race": datasets.Value("string"), "gender": datasets.Value("string"), "align": datasets.Value("string"), "name": datasets.Value("string"), "death": datasets.Value("string"), "conduct": datasets.Value("string"), "turns": datasets.Value("int32"), "achieve": datasets.Value("string"), "realtime": datasets.Value("int64"), "starttime": datasets.Value("int64"), "endtime": datasets.Value("int64"), "gender0": datasets.Value("string"), "align0": datasets.Value("string"), "flags": datasets.Value("string") } } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): # data_file = dl_manager.download_and_extract(f"data/data-{self.config.name}-any.hdf5.zip") data_file = dl_manager.download(f"data/data-{self.config.name}-any.hdf5") metadata_file = dl_manager.download(f"data/metadata-{self.config.name}-any.json") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_file": data_file, "metadata_file": metadata_file, "dl_manager": dl_manager } ) ] def _generate_examples(self, data_file, metadata_file, dl_manager): if dl_manager.is_streaming: data_file = xopen(data_file, "rb") with h5py.File(data_file, "r") as df, xopen(metadata_file, "r") as f: # this thing is super small, so we will load it all meta = json.load(f) for i, (ep_key, ep_meta) in enumerate(zip(df["/"], meta)): assert int(ep_key) == int(ep_meta["gameid"]) yield i, { "data": { "tty_chars": df[f"{ep_key}/tty_chars"][()], "tty_colors": df[f"{ep_key}/tty_colors"][()], "tty_cursor": df[f"{ep_key}/tty_cursor"][()], "actions": df[f"{ep_key}/actions"][()], "rewards": df[f"{ep_key}/rewards"][()], "dones": df[f"{ep_key}/dones"][()] }, "metadata": ep_meta } if dl_manager.is_streaming: data_file.close()