--- annotations_creators: - found language_creators: - found language: - ar - en - es - fr - ru - zh license: other multilinguality: - multilingual size_categories: - 10M<n<100M source_datasets: - original task_categories: - translation task_ids: [] paperswithcode_id: united-nations-parallel-corpus pretty_name: United Nations Parallel Corpus config_names: - ar-en - ar-es - ar-fr - ar-ru - ar-zh - en-es - en-fr - en-ru - en-zh - es-fr - es-ru - es-zh - fr-ru - fr-zh - ru-zh dataset_info: - config_name: ar-en features: - name: translation dtype: translation: languages: - ar - en splits: - name: train num_bytes: 8039673899 num_examples: 20044478 download_size: 3638378262 dataset_size: 8039673899 - config_name: ar-es features: - name: translation dtype: translation: languages: - ar - es splits: - name: train num_bytes: 8715738416 num_examples: 20532014 download_size: 3938780664 dataset_size: 8715738416 - config_name: ar-fr features: - name: translation dtype: translation: languages: - ar - fr splits: - name: train num_bytes: 8897831806 num_examples: 20281645 download_size: 3976788621 dataset_size: 8897831806 - config_name: ar-ru features: - name: translation dtype: translation: languages: - ar - ru splits: - name: train num_bytes: 11395906619 num_examples: 20571334 download_size: 4836152717 dataset_size: 11395906619 - config_name: ar-zh features: - name: translation dtype: translation: languages: - ar - zh splits: - name: train num_bytes: 6447644160 num_examples: 17306056 download_size: 3050491574 dataset_size: 6447644160 - config_name: en-es features: - name: translation dtype: translation: languages: - en - es splits: - name: train num_bytes: 8241615138 num_examples: 25227004 download_size: 3986062875 dataset_size: 8241615138 - config_name: en-fr features: - name: translation dtype: translation: languages: - en - fr splits: - name: train num_bytes: 9718498495 num_examples: 30340652 download_size: 4580188433 dataset_size: 9718498495 - config_name: en-ru features: - name: translation dtype: translation: languages: - en - ru splits: - name: train num_bytes: 11156144547 num_examples: 25173398 download_size: 4899993315 dataset_size: 11156144547 - config_name: en-zh features: - name: translation dtype: translation: languages: - en - zh splits: - name: train num_bytes: 4988798590 num_examples: 17451549 download_size: 2554362693 dataset_size: 4988798590 - config_name: es-fr features: - name: translation dtype: translation: languages: - es - fr splits: - name: train num_bytes: 9230870495 num_examples: 25887160 download_size: 4379207947 dataset_size: 9230870495 - config_name: es-ru features: - name: translation dtype: translation: languages: - es - ru splits: - name: train num_bytes: 10789762294 num_examples: 22294106 download_size: 4748706797 dataset_size: 10789762294 - config_name: es-zh features: - name: translation dtype: translation: languages: - es - zh splits: - name: train num_bytes: 5475365986 num_examples: 17599223 download_size: 1639717723 dataset_size: 5475365986 - config_name: fr-ru features: - name: translation dtype: translation: languages: - fr - ru splits: - name: train num_bytes: 12099669711 num_examples: 25219973 download_size: 2762585269 dataset_size: 12099669711 - config_name: fr-zh features: - name: translation dtype: translation: languages: - fr - zh splits: - name: train num_bytes: 5679222134 num_examples: 17521170 download_size: 1668823634 dataset_size: 5679222134 - config_name: ru-zh features: - name: translation dtype: translation: languages: - ru - zh splits: - name: train num_bytes: 7905443441 num_examples: 17920922 download_size: 1934425373 dataset_size: 7905443441 configs: - config_name: ar-en data_files: - split: train path: ar-en/train-* - config_name: ar-es data_files: - split: train path: ar-es/train-* - config_name: ar-fr data_files: - split: train path: ar-fr/train-* - config_name: ar-ru data_files: - split: train path: ar-ru/train-* - config_name: ar-zh data_files: - split: train path: ar-zh/train-* - config_name: en-es data_files: - split: train path: en-es/train-* - config_name: en-fr data_files: - split: train path: en-fr/train-* - config_name: en-ru data_files: - split: train path: en-ru/train-* - config_name: en-zh data_files: - split: train path: en-zh/train-* - config_name: es-fr data_files: - split: train path: es-fr/train-* - config_name: es-ru data_files: - split: train path: es-ru/train-* --- # Dataset Card for United Nations Parallel Corpus ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://opus.nlpl.eu/UNPC/corpus/version/UNPC - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** https://aclanthology.org/L16-1561/ - **Leaderboard:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Dataset Summary The United Nations Parallel Corpus is the first parallel corpus composed from United Nations documents published by the original data creator. The parallel corpus consists of manually translated UN documents from the last 25 years (1990 to 2014) for the six official UN languages, Arabic, Chinese, English, French, Russian, and Spanish. The corpus is freely available for download under a liberal license. ### Supported Tasks and Leaderboards The underlying task is machine translation. ### Languages The six official UN languages: Arabic, Chinese, English, French, Russian, and Spanish. ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information https://conferences.unite.un.org/UNCORPUS/#disclaimer The following disclaimer, an integral part of the United Nations Parallel Corpus, shall be respected with regard to the Corpus (no other restrictions apply): - The United Nations Parallel Corpus is made available without warranty of any kind, explicit or implied. The United Nations specifically makes no warranties or representations as to the accuracy or completeness of the information contained in the United Nations Corpus. - Under no circumstances shall the United Nations be liable for any loss, liability, injury or damage incurred or suffered that is claimed to have resulted from the use of the United Nations Corpus. The use of the United Nations Corpus is at the user's sole risk. The user specifically acknowledges and agrees that the United Nations is not liable for the conduct of any user. If the user is dissatisfied with any of the material provided in the United Nations Corpus, the user's sole and exclusive remedy is to discontinue using the United Nations Corpus. - When using the United Nations Corpus, the user must acknowledge the United Nations as the source of the information. For references, please cite this reference: Ziemski, M., Junczys-Dowmunt, M., and Pouliquen, B., (2016), The United Nations Parallel Corpus, Language Resources and Evaluation (LREC’16), Portorož, Slovenia, May 2016. - Nothing herein shall constitute or be considered to be a limitation upon or waiver, express or implied, of the privileges and immunities of the United Nations, which are specifically reserved. ### Citation Information ``` @inproceedings{ziemski-etal-2016-united, title = "The {U}nited {N}ations Parallel Corpus v1.0", author = "Ziemski, Micha{\\l} and Junczys-Dowmunt, Marcin and Pouliquen, Bruno", booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)", month = may, year = "2016", address = "Portoro{\v{z}}, Slovenia", publisher = "European Language Resources Association (ELRA)", url = "https://www.aclweb.org/anthology/L16-1561", pages = "3530--3534", abstract = "This paper describes the creation process and statistics of the official United Nations Parallel Corpus, the first parallel corpus composed from United Nations documents published by the original data creator. The parallel corpus presented consists of manually translated UN documents from the last 25 years (1990 to 2014) for the six official UN languages, Arabic, Chinese, English, French, Russian, and Spanish. The corpus is freely available for download under a liberal license. Apart from the pairwise aligned documents, a fully aligned subcorpus for the six official UN languages is distributed. We provide baseline BLEU scores of our Moses-based SMT systems trained with the full data of language pairs involving English and for all possible translation directions of the six-way subcorpus.", } ``` ### Contributions Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset.