The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 9 new columns ({'average_accuracy', 'label', 'number_of_words', 'sentence_2', 'number_of_characters', 'item_difficulty', 'sentence_1', 'flesch_score_textstat', 'mean_grade_level_textstat'}) and 2 missing columns ({'pred_label', 'agg_human_conf'}).

This happened while the csv dataset builder was generating data using

hf://datasets/GGLab/cogeval/human/SNLI-lalor/snli_human_4gs.csv (at revision 4c26c31e8effd582aa368ba2f194986326f635cd)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              sample_id: int64
              snli_id: string
              sentence_1: string
              sentence_2: string
              label: string
              item_difficulty: double
              average_accuracy: double
              flesch_score_textstat: double
              mean_grade_level_textstat: double
              number_of_words: int64
              number_of_characters: int64
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1661
              to
              {'sample_id': Value(dtype='int64', id=None), 'snli_id': Value(dtype='string', id=None), 'pred_label': Value(dtype='string', id=None), 'agg_human_conf': Value(dtype='float64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1321, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 935, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 9 new columns ({'average_accuracy', 'label', 'number_of_words', 'sentence_2', 'number_of_characters', 'item_difficulty', 'sentence_1', 'flesch_score_textstat', 'mean_grade_level_textstat'}) and 2 missing columns ({'pred_label', 'agg_human_conf'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/GGLab/cogeval/human/SNLI-lalor/snli_human_4gs.csv (at revision 4c26c31e8effd582aa368ba2f194986326f635cd)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

sample_id
int64
snli_id
string
pred_label
string
agg_human_conf
float64
0
1947351225.jpg#0r1c
contradiction
0.83828
1
3626964430.jpg#0r1e
entailment
0.885363
2
4576144189.jpg#3r1e
entailment
0.95087
3
507370108.jpg#3r1n
neutral
0.864893
4
3361210233.jpg#0r1n
neutral
0.564995
5
3512127856.jpg#2r1n
neutral
0.788127
6
6775386430.jpg#1r1n
neutral
0.69089
7
3433982387.jpg#1r1n
entailment
0.972364
8
358127240.jpg#4r1n
neutral
0.749232
9
4919196839.jpg#0r1e
entailment
0.962129
10
2550027486.jpg#3r1n
neutral
0.775844
11
5635975939.jpg#3r1c
neutral
0.55783
12
4900546628.jpg#2r1n
neutral
0.753327
13
7786624414.jpg#2r1c
contradiction
0.700102
14
2731171552.jpg#1r1c
neutral
0.5087
15
2895548671.jpg#2r1n
neutral
0.818833
16
4937760948.jpg#4r1e
entailment
0.977482
17
75204250.jpg#2r1n
neutral
0.853634
18
2916012955.jpg#4r1n
neutral
0.875128
19
2496713113.jpg#3r1c
neutral
0.501535
20
4351734575.jpg#0r1e
neutral
0.626407
21
7067778185.jpg#2r1e
entailment
0.859775
22
4923755473.jpg#1r1n
entailment
0.74002
23
956164675.jpg#2r1e
entailment
0.619243
24
3590653633.jpg#4r1c
neutral
0.598772
25
3469609037.jpg#1r1n
neutral
0.819857
26
87938334.jpg#1r1e
entailment
0.658137
27
3309042087.jpg#4r1n
neutral
0.797339
28
7060264119.jpg#2r1c
contradiction
0.488229
29
3386694897.jpg#3r1e
entailment
0.886387
30
4291704682.jpg#3r1n
neutral
0.714432
31
2178095150.jpg#2r1c
contradiction
0.698055
32
3543378438.jpg#1r1c
neutral
0.737973
33
2858757067.jpg#3r1e
neutral
0.547595
34
4573386995.jpg#1r1c
contradiction
0.515865
35
4829253619.jpg#4r1c
neutral
0.665302
36
3163477256.jpg#4r1n
entailment
0.938588
37
31648340.jpg#1r1n
neutral
0.500512
38
2965189317.jpg#2r1n
neutral
0.627431
39
3600403707.jpg#2r1c
neutral
0.813715
40
430292291.jpg#2r1c
neutral
0.564995
41
2983889345.jpg#4r1n
entailment
0.556807
42
2760167.jpg#4r1c
neutral
0.488229
43
4676792744.jpg#2r1c
contradiction
0.541453
44
168728234.jpg#2r1n
entailment
0.738997
45
2970162432.jpg#0r1e
entailment
0.862845
46
218854747.jpg#3r1n
neutral
0.501535
47
2979997455.jpg#0r1n
neutral
0.834186
48
4360937435.jpg#3r1n
neutral
0.536336
49
2959165388.jpg#4r1e
neutral
0.799386
50
4910374312.jpg#4r1e
entailment
0.967247
51
4520820052.jpg#1r1c
neutral
0.67042
52
3574847368.jpg#0r1c
contradiction
0.57216
53
408627152.jpg#3r1c
neutral
0.617195
54
3873342570.jpg#2r1c
contradiction
0.693961
55
5975778602.jpg#1r1e
entailment
0.943705
56
6156372684.jpg#1r1c
contradiction
0.688843
57
339800370.jpg#0r1c
contradiction
0.860798
58
152979089.jpg#4r1c
contradiction
0.614125
59
2849864963.jpg#0r1n
neutral
0.924258
60
4758348295.jpg#2r1e
entailment
0.584442
61
3655773435.jpg#0r1n
neutral
0.669396
62
3933863527.jpg#3r1c
contradiction
0.497441
63
6659698.jpg#3r1e
entailment
0.792221
64
2908391335.jpg#4r1e
entailment
0.878199
65
3427852996.jpg#4r1e
entailment
0.927329
66
4717499333.jpg#4r1e
entailment
0.492323
67
2175758177.jpg#1r1n
neutral
0.751279
68
3456488632.jpg#2r1e
entailment
0.961105
69
961664774.jpg#2r1e
entailment
0.935517
70
2775461796.jpg#2r1c
contradiction
0.600819
71
8089660385.jpg#3r1n
contradiction
0.567042
72
248698033.jpg#2r1n
neutral
0.880246
73
3011809448.jpg#3r1n
entailment
0.979529
74
26720379.jpg#4r1n
neutral
0.643808
75
7712223846.jpg#1r1e
entailment
0.831116
76
8040947572.jpg#2r1c
contradiction
0.646878
77
4637341301.jpg#3r1n
entailment
0.911975
78
3060969260.jpg#3r1n
neutral
0.865916
79
2800531753.jpg#0r1n
neutral
0.795292
80
3611694228.jpg#3r1n
neutral
0.585466
81
8025717431.jpg#3r1c
contradiction
0.963153
82
2258951972.jpg#4r1n
entailment
0.977482
83
7671851684.jpg#0r1e
entailment
0.543501
84
3208999896.jpg#4r1c
neutral
0.531218
85
3381788544.jpg#0r1c
contradiction
0.640737
86
3070485870.jpg#3r1n
neutral
0.694985
87
4788967880.jpg#0r1n
neutral
0.829069
88
4831683216.jpg#0r1c
neutral
0.554759
89
3030015033.jpg#2r1n
neutral
0.847492
0
1947351225.jpg#0r1c
null
null
1
3626964430.jpg#0r1e
null
null
2
4576144189.jpg#3r1e
null
null
3
507370108.jpg#3r1n
null
null
4
3361210233.jpg#0r1n
null
null
5
3512127856.jpg#2r1n
null
null
6
6775386430.jpg#1r1n
null
null
7
3433982387.jpg#1r1n
null
null
8
358127240.jpg#4r1n
null
null
9
4919196839.jpg#0r1e
null
null
End of preview.