Datasets:
File size: 5,658 Bytes
04fcf96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# Copyright 2024 FBK
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
try:
import pandas as pd
except ImportError:
print("Please install the pandas package with 'pip install pandas' and try again.")
exit(1)
import argparse
_VERSION = "1.01"
class ExplicitDefaultsHelpFormatter(argparse.ArgumentDefaultsHelpFormatter):
def _get_help_string(self, action):
if action.default is None or action.default is False:
return action.help
return super()._get_help_string(action)
# max size of pattern (seq of words) that,
# if repeated at least thresh1grams/threshNgrams times,
# risesflags the hallucination:
maxN = 5
def findHall(wrd):
for N in range(maxN, 0, -1):
count = 0
for idx in range(0,len(wrd)-2*N+2): # the max idx value must be leave
# room for at least one repetition
# of the N_sized pattern
count += hallLen(idx,N,wrd)
if ( N<3 and count+1>=parsed_args.thresh1grams ) or \
( N>=3 and count+1>=parsed_args.threshNgrams ):
return [N, idx, count]
else:
count = 0 # reset
return [0,0,0]
def hallLen(startIdx,N,wrd):
hallLen = 0
startRep = startIdx + N # first index after the end of the current pattern
while startRep < len(wrd)-N+1:
if isHall(startIdx,startRep,N,wrd):
hallLen+=1
startRep+=N
else:
break
return hallLen
def isHall(s1,s2,N,wrd):
i = 0
while i<N and wrd[s1+i] == wrd[s2+i]:
i+=1
return i == N
def main(args):
"""
This script flags (by setting True the corresponding entry
of the hall_repeated_ngrams column) those sentences where a
pattern (n-gram, that is a sequence of n words) is repeated
at least a given number of times; for patterns of size 1 to 2,
the minimum number of times for flagging it is set by the
thresh1grams parameter (default value: 4), for those of size
3-5 by threshNgrams (2)
"""
if (parsed_args.version):
print(f"Version {_VERSION} of anomalous string detector")
exit(1)
if not (tsv_files_specified):
print("--tsv-InFile and --tsv-OutFile are both required")
parser.print_usage()
exit(1)
if not (wrong_thresh_values):
print("--thresh1grams and --threshNgrams must both be positive integers")
parser.print_usage()
exit(1)
try:
inDF = pd.read_csv(args.tsv_InFile, sep='\t', dtype=str, low_memory=False, na_filter=False, quoting=3)
except IOError:
print("Error in opening "+args.tsv_InFile+" file")
try:
txt = inDF[parsed_args.column]
except KeyError:
print("Error in reading column <"+parsed_args.column+"> in TSV file")
exit(1)
flag = []
for line in txt:
words = line.split()
[size, idx, count] = findHall(words)
if size>0:
if args.quiet:
flag.append("True")
else:
flag.append("True (pattern of length " + str(size) + \
" from index " + str(idx) + \
", repeated at least " + str(count+1) + " times)")
else:
flag.append("False")
inDF['hall_repeated_ngrams'] = flag
inDF.to_csv(args.tsv_OutFile, sep="\t", index=False, quoting=3)
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=ExplicitDefaultsHelpFormatter)
# I/O related arguments
parser.add_argument(
'--tsv-InFile', '-i', type=str,
help="The input TSV file [Mandatory]")
parser.add_argument(
'--tsv-OutFile', '-o', type=str,
help="The output TSV file [Mandatory. If equal to input TSV file, the new column is added to the original file]")
# Processing arguments:
parser.add_argument(
'--column', '-c', default='source',
help="Column name of the text to process [Optional]")
parser.add_argument(
'--thresh1grams', '-u', type=int, default=4,
help="Threshold for 1-2_word hallucinations [Optional]")
parser.add_argument(
'--threshNgrams', '-n', type=int, default=2,
help="Threshold for 3-5_word hallucinations [Optional]")
# Reporting related arguments
parser.add_argument(
'--quiet', '-q', default=False, action='store_true',
help='Print only True/False, no explanation for True\'s')
# Get version information:
parser.add_argument(
'--version', '-v', action='store_true', default=False,
help="Print version of the script and exit")
parsed_args = parser.parse_args()
tsv_files_specified = \
getattr(parsed_args, 'tsv_InFile') is not None \
and len(parsed_args.tsv_InFile) > 0 \
and getattr(parsed_args, 'tsv_OutFile') is not None \
and len(parsed_args.tsv_OutFile) > 0
wrong_thresh_values = parsed_args.thresh1grams > 0 \
and parsed_args.threshNgrams > 0
main(parsed_args)
|