import os import json from collections import defaultdict from transformers import LlamaTokenizer from tqdm import tqdm input_json_file = '/Users/liyu/PycharmProjects/CoTKR/updated.json' output_dir = '/Users/liyu/PycharmProjects/CoTKR/output' os.makedirs(output_dir, exist_ok=True) model_path = '/Users/liyu/PycharmProjects/CoTKR/Llama-2-7b-hf' tokenizer = LlamaTokenizer.from_pretrained(model_path) with open(input_json_file, 'r') as f: triples = json.load(f) grouped_entity_triples = defaultdict(list) for triple in triples: subj, relation, obj = triple grouped_entity_triples[subj].append(f"{relation}: {obj}") # 根据Tokenizer的长度限制创建段落 def create_paragraphs(subj, relations, tokenizer, max_tokens=512): paragraphs = [] current_chunk = [] current_tokens = 0 for relation in relations: tokens_in_relation = len(tokenizer.encode(relation, add_special_tokens=False)) if current_tokens + tokens_in_relation + 1 > max_tokens: # +1考虑分隔符或空格 paragraphs.append({ "title": f"{subj}", "contents": ", ".join(current_chunk).strip() }) current_chunk = [relation] current_tokens = tokens_in_relation else: current_chunk.append(relation) current_tokens += tokens_in_relation + 1 # +1考虑分隔符或空格 if current_chunk: paragraphs.append({ "title": f"{subj}", "contents": ", ".join(current_chunk).strip() }) return paragraphs all_paragraphs = [] for subj, relations in tqdm(grouped_entity_triples.items(), desc="Processing subjects", unit="subject"): paragraphs = create_paragraphs(subj, relations, tokenizer) all_paragraphs.extend(paragraphs) output_file = os.path.join(output_dir, 'new_triple_processed.json') with open(output_file, 'w') as out_f: json.dump(all_paragraphs, out_f, ensure_ascii=False, indent=4) # print(f"Processed paragraphs saved to {output_file}")