Commit
·
ab7320b
1
Parent(s):
b0bc6f7
Upload wiki_art.py with huggingface_hub
Browse files- wiki_art.py +111 -0
wiki_art.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
|
7 |
+
_CITATION = """\
|
8 |
+
@InProceedings{huggingface:dataset,
|
9 |
+
title = {WikiArt},
|
10 |
+
author={Medellín AI.
|
11 |
+
},
|
12 |
+
year={2023}
|
13 |
+
}
|
14 |
+
"""
|
15 |
+
|
16 |
+
_DESCRIPTION = """\
|
17 |
+
Este dataset fue creado para el workshop de Medellin AI y Bancolombia con fines educativos.
|
18 |
+
"""
|
19 |
+
|
20 |
+
_HOMEPAGE = "https://www.meetup.com/medellin-ai/"
|
21 |
+
|
22 |
+
_LICENSE = "mit"
|
23 |
+
|
24 |
+
_URLS = {
|
25 |
+
"train": "https://workshophuggingface.blob.core.windows.net/wikiart/train.zip",
|
26 |
+
"test": "https://workshophuggingface.blob.core.windows.net/wikiart/test.zip"
|
27 |
+
}
|
28 |
+
|
29 |
+
_NAMES = ["Baroque", "Realism"]
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
class WikiArt(datasets.GeneratorBasedBuilder):
|
35 |
+
|
36 |
+
VERSION = datasets.Version("1.0.0")
|
37 |
+
DEFAULT_WRITER_BATCH_SIZE = 200
|
38 |
+
|
39 |
+
BUILDER_CONFIGS = [
|
40 |
+
datasets.BuilderConfig(name="All", version=VERSION, description="This contains the whole dataset"),
|
41 |
+
datasets.BuilderConfig(name="Baroque", version=VERSION, description="This part of the dataset contains only Baroque style"),
|
42 |
+
datasets.BuilderConfig(name="Realism", version=VERSION, description="This part of the dataset contains only Realism style"),
|
43 |
+
]
|
44 |
+
|
45 |
+
def _info(self):
|
46 |
+
features = datasets.Features(
|
47 |
+
{
|
48 |
+
"style": datasets.features.ClassLabel(names=_NAMES),
|
49 |
+
"artwork": datasets.Value("string"),
|
50 |
+
"image": datasets.Image(decode=True)
|
51 |
+
}
|
52 |
+
)
|
53 |
+
|
54 |
+
return datasets.DatasetInfo(
|
55 |
+
description=_DESCRIPTION,
|
56 |
+
features=features,
|
57 |
+
supervised_keys=("image", "style"),
|
58 |
+
homepage=_HOMEPAGE,
|
59 |
+
license=_LICENSE,
|
60 |
+
citation=_CITATION,
|
61 |
+
)
|
62 |
+
|
63 |
+
|
64 |
+
def _split_generators(self, dl_manager):
|
65 |
+
|
66 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
67 |
+
|
68 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
69 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
70 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
71 |
+
|
72 |
+
data_dir = dl_manager.download_and_extract(_URLS)
|
73 |
+
|
74 |
+
return [
|
75 |
+
datasets.SplitGenerator(
|
76 |
+
name=datasets.Split.TRAIN,
|
77 |
+
gen_kwargs={
|
78 |
+
"folderpath" : data_dir['train'],
|
79 |
+
"csv_file": 'wikiart_scraped_train.csv',
|
80 |
+
"split": "train",
|
81 |
+
},
|
82 |
+
),
|
83 |
+
datasets.SplitGenerator(
|
84 |
+
name=datasets.Split.TEST,
|
85 |
+
gen_kwargs={
|
86 |
+
"folderpath" : data_dir['test'],
|
87 |
+
"csv_file": 'wikiart_scraped_test.csv',
|
88 |
+
"split": "test"
|
89 |
+
},
|
90 |
+
)
|
91 |
+
]
|
92 |
+
|
93 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
94 |
+
def _generate_examples(self, folderpath, csv_file, split):
|
95 |
+
|
96 |
+
|
97 |
+
df_wiki_art = pd.read_csv(os.path.join(folderpath,split,csv_file), header=0)
|
98 |
+
|
99 |
+
if self.config.name != 'All':
|
100 |
+
df_wiki_art.query(f"Style == '{self.config.name}'", inplace=True)
|
101 |
+
|
102 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
103 |
+
for index, row in df_wiki_art.iterrows():
|
104 |
+
|
105 |
+
image_path = os.path.join(folderpath,split,row['Link'].split('/')[-1])
|
106 |
+
# Yields examples as (key, example) tuples
|
107 |
+
yield index, {
|
108 |
+
"style": row["Style"],
|
109 |
+
"artwork": row["Artwork"],
|
110 |
+
"image": image_path
|
111 |
+
}
|