# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # template from : https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py """Loading script for the biolang dataset for language modeling in biology.""" from __future__ import absolute_import, division, print_function import json from pathlib import Path import datasets import shutil _CITATION = """\ @Unpublished{ huggingface: dataset, title = {biolang}, authors={Thomas Lemberger, EMBO}, year={2021} } """ _DESCRIPTION = """\ This dataset is based on abstracts from the open access section of PubMed Central to train language models for the domain of biology. """ _HOMEPAGE = "https://europepmc.org/downloads/openaccess" _LICENSE = "CC BY 4.0" _URLs = { "biolang": "https://huggingface.co/datasets/EMBO/biolang/resolve/main/oapmc_abstracts_figs.zip", } class BioLang(datasets.GeneratorBasedBuilder): """BioLang: a dataset to train language models in biology.""" VERSION = datasets.Version("0.0.1") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="MLM", version="0.0.1", description="Dataset for general masked language model."), datasets.BuilderConfig(name="DET", version="0.0.1", description="Dataset for part-of-speech (determinant) masked language model."), datasets.BuilderConfig(name="VERB", version="0.0.1", description="Dataset for part-of-speech (verbs) masked language model."), datasets.BuilderConfig(name="SMALL", version="0.0.1", description="Dataset for part-of-speech (determinants, conjunctions, prepositions, pronouns) masked language model."), ] DEFAULT_CONFIG_NAME = "MLM" # It's not mandatory to have a default configuration. Just use one if it make sense. def _info(self): if self.config.name == "MLM": features = datasets.Features( { "input_ids": datasets.Sequence(feature=datasets.Value("int32")), "special_tokens_mask": datasets.Sequence(feature=datasets.Value("int8")), } ) elif self.config.name in ["DET", "VERB", "SMALL"]: features = datasets.Features({ "input_ids": datasets.Sequence(feature=datasets.Value("int32")), "tag_mask": datasets.Sequence(feature=datasets.Value("int8")), }) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, # Here we define them above because they are different between the two configurations supervised_keys=('input_ids', 'pos_mask'), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" if self.config.data_dir: data_dir = self.config.data_dir else: url = _URLs["biolang"] data_dir = dl_manager.download_and_extract(url) data_dir += "/oapmc_abstracts_figs" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_dir + "/train.jsonl"), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": data_dir + "/test.jsonl"), "split": "test" }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": data_dir + "/eval.jsonl"), "split": "eval", }, ), ] def _generate_examples(self, filepath, split): """ Yields examples. """ with open(filepath, encoding="utf-8") as f: for id_, row in enumerate(f): data = json.loads(row) if self.config.name == "MLM": yield id_, { "input_ids": data["input_ids"], "special_tokens_mask": data['special_tokens_mask'] } elif self.config.name == "DET": pos_mask = [0] * len(data['input_ids']) for idx, label in enumerate(data['label_ids']): if label == 'DET': pos_mask[idx] = 1 yield id_, { "input_ids": data['input_ids'], "tag_mask": pos_mask, } elif self.config.name == "VERB": pos_mask = [0] * len(data['input_ids']) for idx, label in enumerate(data['label_ids']): if label == 'VERB': pos_mask[idx] = 1 yield id_, { "input_ids": data['input_ids'], "tag_mask": pos_mask, } elif self.config.name == "SMALL": pos_mask = [0] * len(data['input_ids']) for idx, label in enumerate(data['label_ids']): if label in ['DET', 'CCONJ', 'SCONJ', 'ADP', 'PRON']: pos_mask[idx] = 1 yield id_, { "input_ids": data['input_ids'], "tag_mask": pos_mask, }