# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


# template from : https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py

from __future__ import absolute_import, division, print_function

import json
import os
import datasets

_BASE_URL = "https://huggingface.co/datasets/EMBO/SourceData/resolve/main/"


class SourceData(datasets.GeneratorBasedBuilder):
    """SourceDataNLP provides datasets to train NLP tasks in cell and molecular biology."""

    _NER_LABEL_NAMES = [
        "O",
        "B-SMALL_MOLECULE",
        "I-SMALL_MOLECULE",
        "B-GENEPROD",
        "I-GENEPROD",
        "B-SUBCELLULAR",
        "I-SUBCELLULAR",
        "B-CELL_TYPE",
        "I-CELL_TYPE",
        "B-TISSUE",
        "I-TISSUE",
        "B-ORGANISM",
        "I-ORGANISM",
        "B-EXP_ASSAY",
        "I-EXP_ASSAY",
        "B-DISEASE",
        "I-DISEASE",
        "B-CELL_LINE",
        "I-CELL_LINE",
    ]
    _SEMANTIC_ROLES = [
        "O",
        "B-CONTROLLED_VAR",
        "I-CONTROLLED_VAR",
        "B-MEASURED_VAR",
        "I-MEASURED_VAR",
    ]
    _PANEL_START_NAMES = ["O", "B-PANEL_START", "I-PANEL_START"]
    _ROLES_MULTI = ["O", "GENEPROD", "SMALL_MOLECULE"]

    _CITATION = """\
@article{abreu2023sourcedata,
  title={The SourceData-NLP dataset: integrating curation into scientific publishing
  for training large language models},
  author={Abreu-Vicente, Jorge and Sonntag, Hannah and Eidens, Thomas and Lemberger, Thomas},
  journal={arXiv preprint arXiv:2310.20440},
  year={2023}
}
    """

    _DESCRIPTION = """\
    This dataset is based on the SourceData database and is intented to facilitate training of NLP tasks in the cell and molecualr biology domain.
    """

    _HOMEPAGE = "https://huggingface.co/datasets/EMBO/SourceData"

    _LICENSE = "CC-BY 4.0"

    DEFAULT_CONFIG_NAME = "NER"

    _LATEST_VERSION = "2.0.3"  # Should this be updated to 2.0.3

    def _info(self):
        VERSION = (
            self.config.version
            if self.config.version not in ["0.0.0", "latest"]
            else self._LATEST_VERSION
        )
        self._URLS = {
            "NER": f"{_BASE_URL}token_classification/v_{VERSION}/ner/",
            "PANELIZATION": f"{_BASE_URL}token_classification/v_{VERSION}/panelization/",
            "ROLES_GP": f"{_BASE_URL}token_classification/v_{VERSION}/roles_gene/",
            "ROLES_SM": f"{_BASE_URL}token_classification/v_{VERSION}/roles_small_mol/",
            "ROLES_MULTI": f"{_BASE_URL}token_classification/v_{VERSION}/roles_multi/",
            "FULL": os.path.join(
                _BASE_URL,
                "bigbio",
                # f"v_{VERSION}",
            ),
        }
        self.BUILDER_CONFIGS = [
            datasets.BuilderConfig(
                name="NER",
                version=VERSION,
                description="Dataset for named-entity recognition.",
            ),
            datasets.BuilderConfig(
                name="PANELIZATION",
                version=VERSION,
                description="Dataset to separate figure captions into panels.",
            ),
            datasets.BuilderConfig(
                name="ROLES_GP",
                version=VERSION,
                description="Dataset for semantic roles of gene products.",
            ),
            datasets.BuilderConfig(
                name="ROLES_SM",
                version=VERSION,
                description="Dataset for semantic roles of small molecules.",
            ),
            datasets.BuilderConfig(
                name="ROLES_MULTI",
                version=VERSION,
                description="Dataset to train roles. ROLES_GP and ROLES_SM at once.",
            ),
            datasets.BuilderConfig(
                name="FULL",
                version=VERSION,
                description="Full dataset including all NER + entity linking annotations, links to figure images, etc.",
            ),
            # datasets.BuilderConfig(
            #     name="BIGBIO_KB",
            #     version=VERSION,
            #     description="Full dataset formatted according to BigBio KB schema (see https://huggingface.co/bigbio).  Includes all NER + entity linking annotations.",
            # ),
        ]

        if self.config.name in ["NER", "default"]:
            features = datasets.Features(
                {
                    "words": datasets.Sequence(feature=datasets.Value("string")),
                    "labels": datasets.Sequence(
                        feature=datasets.ClassLabel(
                            num_classes=len(self._NER_LABEL_NAMES),
                            names=self._NER_LABEL_NAMES,
                        )
                    ),
                    # "is_category": datasets.Sequence(feature=datasets.Value("int8")),
                    "tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
                    "text": datasets.Value("string"),
                }
            )
        elif self.config.name == "ROLES_GP":
            features = datasets.Features(
                {
                    "words": datasets.Sequence(feature=datasets.Value("string")),
                    "labels": datasets.Sequence(
                        feature=datasets.ClassLabel(
                            num_classes=len(self._SEMANTIC_ROLES),
                            names=self._SEMANTIC_ROLES,
                        )
                    ),
                    # "is_category": datasets.Sequence(feature=datasets.Value("int8")),
                    "tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
                    "text": datasets.Value("string"),
                }
            )
        elif self.config.name == "ROLES_SM":
            features = datasets.Features(
                {
                    "words": datasets.Sequence(feature=datasets.Value("string")),
                    "labels": datasets.Sequence(
                        feature=datasets.ClassLabel(
                            num_classes=len(self._SEMANTIC_ROLES),
                            names=self._SEMANTIC_ROLES,
                        )
                    ),
                    # "is_category": datasets.Sequence(feature=datasets.Value("int8")),
                    "tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
                    "text": datasets.Value("string"),
                }
            )
        elif self.config.name == "ROLES_MULTI":
            features = datasets.Features(
                {
                    "words": datasets.Sequence(feature=datasets.Value("string")),
                    "labels": datasets.Sequence(
                        feature=datasets.ClassLabel(
                            num_classes=len(self._SEMANTIC_ROLES),
                            names=self._SEMANTIC_ROLES,
                        )
                    ),
                    "is_category": datasets.Sequence(
                        feature=datasets.ClassLabel(
                            num_classes=len(self._ROLES_MULTI), names=self._ROLES_MULTI
                        )
                    ),
                    "tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
                    "text": datasets.Value("string"),
                }
            )
        elif self.config.name == "PANELIZATION":
            features = datasets.Features(
                {
                    "words": datasets.Sequence(feature=datasets.Value("string")),
                    "labels": datasets.Sequence(
                        feature=datasets.ClassLabel(
                            num_classes=len(self._PANEL_START_NAMES),
                            names=self._PANEL_START_NAMES,
                        )
                    ),
                    "tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
                }
            )

        elif self.config.name == "FULL":
            features = datasets.Features(
                {
                    "doi": datasets.Value("string"),
                    "abstract": datasets.Value("string"),
                    # "split": datasets.Value("string"),
                    "figures": [
                        {
                            "fig_id": datasets.Value("string"),
                            "label": datasets.Value("string"),
                            "fig_graphic_url": datasets.Value("string"),
                            "panels": [
                                {
                                    "panel_id": datasets.Value("string"),
                                    "text": datasets.Value("string"),
                                    "panel_graphic_url": datasets.Value("string"),
                                    "entities": [
                                        {
                                            "annotation_id": datasets.Value("string"),
                                            "source": datasets.Value("string"),
                                            "category": datasets.Value("string"),
                                            "entity_type": datasets.Value("string"),
                                            "role": datasets.Value("string"),
                                            "text": datasets.Value("string"),
                                            "ext_ids": datasets.Value("string"),
                                            "norm_text": datasets.Value("string"),
                                            "ext_dbs": datasets.Value("string"),
                                            "in_caption": datasets.Value("bool"),
                                            "ext_names": datasets.Value("string"),
                                            "ext_tax_ids": datasets.Value("string"),
                                            "ext_tax_names": datasets.Value("string"),
                                            "ext_urls": datasets.Value("string"),
                                            "offsets": [datasets.Value("int64")],
                                        }
                                    ],
                                }
                            ],
                        }
                    ],
                }
            )

        return datasets.DatasetInfo(
            description=self._DESCRIPTION,
            features=features,
            supervised_keys=("words", "label_ids"),
            homepage=self._HOMEPAGE,
            license=self._LICENSE,
            citation=self._CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager):
        """Returns SplitGenerators.
        Uses local files if a data_dir is specified. Otherwise downloads the files from their official url.
        """

        try:
            config_name = self.config.name if self.config.name != "default" else "NER"

            if config_name == "FULL":
                url = os.path.join(
                    self._URLS[config_name],
                    #    "source_data_full.zip"
                    "source_data_json_splits_2.0.2.zip",
                )
                data_dir = dl_manager.download_and_extract(url)
                data_files = [
                    os.path.join(data_dir, filename)
                    for filename in ["train.jsonl", "test.jsonl", "validation.jsonl"]
                ]
            else:
                urls = [
                    os.path.join(self._URLS[config_name], "train.jsonl"),
                    os.path.join(self._URLS[config_name], "test.jsonl"),
                    os.path.join(self._URLS[config_name], "validation.jsonl"),
                ]
                data_files = dl_manager.download(urls)
        except:
            raise ValueError(f"unkonwn config name: {self.config.name}")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": data_files[0]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": data_files[1]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": data_files[2]},
            ),
        ]

    def _generate_examples(self, filepath):
        """Yields examples. This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
        It is in charge of opening the given file and yielding (key, example) tuples from the dataset
        The key is not important, it's more here for legacy reason (legacy from tfds)"""

        no_panels = 0
        no_entities = 0
        has_panels = 0
        has_entities = 0

        with open(filepath, encoding="utf-8") as f:
            # logger.info("⏳ Generating examples from = %s", filepath)
            for id_, row in enumerate(f):
                data = json.loads(row.strip())
                if self.config.name in ["NER", "default"]:
                    yield id_, {
                        "words": data["words"],
                        "labels": data["labels"],
                        "tag_mask": data["is_category"],
                        "text": data["text"],
                    }
                elif self.config.name == "ROLES_GP":
                    yield id_, {
                        "words": data["words"],
                        "labels": data["labels"],
                        "tag_mask": data["is_category"],
                        "text": data["text"],
                    }
                elif self.config.name == "ROLES_MULTI":
                    labels = data["labels"]
                    tag_mask = [1 if t != 0 else 0 for t in labels]
                    yield id_, {
                        "words": data["words"],
                        "labels": data["labels"],
                        "tag_mask": tag_mask,
                        "is_category": data["is_category"],
                        "text": data["text"],
                    }
                elif self.config.name == "ROLES_SM":
                    yield id_, {
                        "words": data["words"],
                        "labels": data["labels"],
                        "tag_mask": data["is_category"],
                        "text": data["text"],
                    }
                elif self.config.name == "PANELIZATION":
                    labels = data["labels"]
                    tag_mask = [1 if t == "B-PANEL_START" else 0 for t in labels]
                    yield id_, {
                        "words": data["words"],
                        "labels": data["labels"],
                        "tag_mask": tag_mask,
                    }

                elif self.config.name == "FULL":
                    doc_figs = data["figures"]
                    all_figures = []
                    for fig in doc_figs:
                        all_panels = []
                        figure = {
                            "fig_id": fig["fig_id"],
                            "label": fig["label"],
                            "fig_graphic_url": fig["fig_graphic_url"],
                        }

                        for p in fig["panels"]:
                            panel = {
                                "panel_id": p["panel_id"],
                                "text": p["text"].strip(),
                                "panel_graphic_url": p["panel_graphic_url"],
                                "entities": [
                                    {
                                        "annotation_id": t["tag_id"],
                                        "source": t["source"],
                                        "category": t["category"],
                                        "entity_type": t["entity_type"],
                                        "role": t["role"],
                                        "text": t["text"],
                                        "ext_ids": t["ext_ids"],
                                        "norm_text": t["norm_text"],
                                        "ext_dbs": t["ext_dbs"],
                                        "in_caption": bool(t["in_caption"]),
                                        "ext_names": t["ext_names"],
                                        "ext_tax_ids": t["ext_tax_ids"],
                                        "ext_tax_names": t["ext_tax_names"],
                                        "ext_urls": t["ext_urls"],
                                        "offsets": t["local_offsets"],
                                    }
                                    for t in p["tags"]
                                ],
                            }
                            for e in panel["entities"]:
                                assert type(e["offsets"]) == list
                            if len(panel["entities"]) == 0:
                                no_entities += 1
                                continue
                            else:
                                has_entities += 1
                            all_panels.append(panel)

                        figure["panels"] = all_panels

                        # Pass on all figures that aren't split into panels
                        if len(all_panels) == 0:
                            no_panels += 1
                            continue
                        else:
                            has_panels += 1
                        all_figures.append(figure)

                    output = {
                        "doi": data["doi"],
                        "abstract": data["abstract"],
                        "figures": all_figures,
                    }
                    yield id_, output