Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -33,7 +33,12 @@ and the roles played on them by the biological entities.
|
|
33 |
Each entity is linked to their correspondent ontology, allowing
|
34 |
for entity disambiguation and NEL.
|
35 |
|
|
|
36 |
|
|
|
|
|
|
|
|
|
37 |
## Dataset Description
|
38 |
- **Homepage:** https://sourcedata.embo.org
|
39 |
- **Repository:** https://github.com/source-data/soda-data
|
@@ -73,23 +78,46 @@ The text in the dataset is English.
|
|
73 |
- `words`: `list` of `strings` text tokenized into words.
|
74 |
- `panel_id`: ID of the panel to which the example belongs to in the SourceData database.
|
75 |
- `label_ids`:
|
76 |
-
- `entity_types`: `list` of `strings` for the IOB2 tags for entity type; possible value in `["O", "I-SMALL_MOLECULE", "B-SMALL_MOLECULE", "I-GENEPROD", "B-GENEPROD", "I-SUBCELLULAR", "B-SUBCELLULAR", "I-
|
77 |
-
- `
|
78 |
-
- `boring`: `list` of `strings` for IOB2 tags for entities unrelated to causal design; values in `["O", "I-BORING", "B-BORING"]`
|
79 |
- `panel_start`: `list` of `strings` for IOB2 tags `["O", "B-PANEL_START"]`
|
80 |
-
- `
|
81 |
-
|
82 |
### Data Splits
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
## Dataset Creation
|
95 |
|
|
|
33 |
Each entity is linked to their correspondent ontology, allowing
|
34 |
for entity disambiguation and NEL.
|
35 |
|
36 |
+
## Dataset usage
|
37 |
|
38 |
+
```python
|
39 |
+
from datasets import load_dataset
|
40 |
+
ds = load_dataset("EMBO/SourceData", "NER", version="1.0.0")
|
41 |
+
```
|
42 |
## Dataset Description
|
43 |
- **Homepage:** https://sourcedata.embo.org
|
44 |
- **Repository:** https://github.com/source-data/soda-data
|
|
|
78 |
- `words`: `list` of `strings` text tokenized into words.
|
79 |
- `panel_id`: ID of the panel to which the example belongs to in the SourceData database.
|
80 |
- `label_ids`:
|
81 |
+
- `entity_types`: `list` of `strings` for the IOB2 tags for entity type; possible value in `["O", "I-SMALL_MOLECULE", "B-SMALL_MOLECULE", "I-GENEPROD", "B-GENEPROD", "I-SUBCELLULAR", "B-SUBCELLULAR", "I-CELL_LINE", "B-CELL_LINE", "I-CELL_TYPE", "B-CELL_TYPE", "I-TISSUE", "B-TISSUE", "I-ORGANISM", "B-ORGANISM", "I-EXP_ASSAY", "B-EXP_ASSAY"]`
|
82 |
+
- `roles`: `list` of `strings` for the IOB2 tags for experimental roles; values in `["O", "I-CONTROLLED_VAR", "B-CONTROLLED_VAR", "I-MEASURED_VAR", "B-MEASURED_VAR"]`
|
|
|
83 |
- `panel_start`: `list` of `strings` for IOB2 tags `["O", "B-PANEL_START"]`
|
84 |
+
- `multi roles`: There are two different label sets. `labels` is like in `roles`. `is_category` tags `GENEPROD` and `SMALL_MOLECULE`.
|
|
|
85 |
### Data Splits
|
86 |
|
87 |
+
* NER and ROLES
|
88 |
+
```
|
89 |
+
DatasetDict({
|
90 |
+
train: Dataset({
|
91 |
+
features: ['words', 'labels', 'tag_mask', 'text'],
|
92 |
+
num_rows: 55250
|
93 |
+
})
|
94 |
+
test: Dataset({
|
95 |
+
features: ['words', 'labels', 'tag_mask', 'text'],
|
96 |
+
num_rows: 6844
|
97 |
+
})
|
98 |
+
validation: Dataset({
|
99 |
+
features: ['words', 'labels', 'tag_mask', 'text'],
|
100 |
+
num_rows: 7951
|
101 |
+
})
|
102 |
+
})
|
103 |
+
```
|
104 |
+
* PANELIZATION
|
105 |
+
```
|
106 |
+
DatasetDict({
|
107 |
+
train: Dataset({
|
108 |
+
features: ['words', 'labels', 'tag_mask'],
|
109 |
+
num_rows: 14655
|
110 |
+
})
|
111 |
+
test: Dataset({
|
112 |
+
features: ['words', 'labels', 'tag_mask'],
|
113 |
+
num_rows: 1871
|
114 |
+
})
|
115 |
+
validation: Dataset({
|
116 |
+
features: ['words', 'labels', 'tag_mask'],
|
117 |
+
num_rows: 2088
|
118 |
+
})
|
119 |
+
})
|
120 |
+
```
|
121 |
|
122 |
## Dataset Creation
|
123 |
|