import os import io import av import json from pickle import dumps, loads import numpy as np import torch from torchvision.transforms.functional import resize import tensorflow as tf import tensorflow_datasets as tfds from einops import rearrange def decode_inst(insts): # Utility to decode encoded language instructions decoded_insts = [] for inst in insts: decoded_insts.append(bytes(inst[np.where(inst != 0)].tolist()).decode("utf-8")) return decoded_insts def save_video(file, video): container = av.open(file, 'w', 'mp4') stream = container.add_stream('libx264', rate=30) stream.height = video[0].shape[0] stream.width = video[0].shape[1] stream.bit_rate = 2000000 # 2Mbps stream.pix_fmt = 'yuv420p' for i in range(len(video)): frame = av.VideoFrame.from_ndarray(video[i], format='rgb24') frame = frame.reformat(format=stream.pix_fmt) for packet in stream.encode(frame): container.mux(packet) # Flush stream for packet in stream.encode(): container.mux(packet) container.close() if __name__ == '__main__': tf_builder = tfds.builder_from_directory('./droid/1.0.0/') tf_dataset = tf_builder.as_dataset(split="train") skip_episode = 78663 js_path = 'index.json' if os.path.exists(js_path): js_data = json.load(open(js_path, 'r')) else: js_data = [] for episode_id, episode in enumerate(tf_dataset): file_path = episode['episode_metadata']['file_path'].numpy().decode('utf-8') recording_folderpath = episode['episode_metadata']['recording_folderpath'].numpy().decode('utf-8') if episode_id <= skip_episode or 'success' not in file_path: print(f'skipping {episode_id}/{len(tf_dataset)}') continue left_camera = [] arm_camera = [] right_camera = [] inst = [] skip_episode = False for step_id, single_step in enumerate(episode['steps']): if single_step['language_instruction'].numpy().decode('utf-8') not in inst: inst.append(single_step['language_instruction'].numpy().decode('utf-8')) if single_step['language_instruction_2'].numpy().decode('utf-8') not in inst: inst.append(single_step['language_instruction_2'].numpy().decode('utf-8')) if single_step['language_instruction_3'].numpy().decode('utf-8') not in inst: inst.append(single_step['language_instruction_3'].numpy().decode('utf-8')) if len(inst) == 1 and inst[0] == '': skip_episode = True break left_camera.append(single_step['observation']['exterior_image_1_left'].numpy()) right_camera.append(single_step['observation']['exterior_image_2_left'].numpy()) arm_camera.append(single_step['observation']['wrist_image_left'].numpy()) if skip_episode: print(f'skipping {episode_id}/{len(tf_dataset)}') continue print(f'saving {episode_id}/{len(tf_dataset)}') save_video(f'droid_videos/episode_{episode_id}_left_camera.mp4', left_camera) save_video(f'droid_videos/episode_{episode_id}_right_camera.mp4', right_camera) save_video(f'droid_videos/episode_{episode_id}_arm_camera.mp4', arm_camera) for i in range(len(inst)): if inst[i] == '': continue js_data.append({"path": f'droid_videos/episode_{episode_id}_left_camera.mp4', "recording_folder": recording_folderpath, "cap": [inst[i]]}) js_data.append({"path": f'droid_videos/episode_{episode_id}_right_camera.mp4', "recording_folder": recording_folderpath, "cap": [inst[i]]}) js_data.append({"path": f'droid_videos/episode_{episode_id}_arm_camera.mp4', "recording_folder": recording_folderpath, "cap": [inst[i]]}) if episode_id % 1000 < 10: json.dump(js_data, open(js_path, 'w'), indent=4) json.dump(js_data, open(js_path, 'w'), indent=4)