"""Module containing the CustomGemma2PromptTokenizingStrategy class""" # Import necessary modules and functions import copy import logging from collections import defaultdict from typing import Generator, List, Tuple # Import from axolotl package from axolotl.prompt_tokenizers import ( PromptTokenizingStrategy, parse_tokenized_to_result, tokenize_prompt_default, ) # Set up logging LOG = logging.getLogger("axolotl") # Define a constant token ID to ignore IGNORE_TOKEN_ID = -100 class CustomGemma2PromptTokenizingStrategy(PromptTokenizingStrategy): """ Tokenizing strategy for CustomGemma2. """ def __init__(self, prompter, tokenizer, *args, **kwargs): # Call the superclass' constructor super().__init__(prompter, tokenizer, *args, **kwargs) def tokenize_prompt(self, prompt): # Tokenize the prompt based on its conversations result, current_len = tokenize_prompt_default() # We don't want to remove the BOS token for the first turn strip_bos = False # Sometimes it gets named 'conversations' and other times 'conversation' if "conversations" in prompt: conversation_name = "conversations" elif "conversation" in prompt: conversation_name = "conversation" else: LOG.warning(f"sample does not contain 'conversations' or 'conversation'") exit() # Iterate over each conversation turn in the prompt num_turns = len(prompt[conversation_name]) for i, turn in enumerate(prompt[conversation_name]): # Strip BOS token and add a new line to the beginning if it's not the first turn if i == 0: strip_bos = False add_new_line = "" else: strip_bos = True add_new_line = "\n" # Check if this is the last turn, so we know to add the EOS token if i == num_turns - 1: end_of_text = True else: end_of_text = False # Get correct roles and messages sharegpt_from, sharegpt_value = turn["from"].strip(), turn["value"].strip() if sharegpt_from == "system": role_name = "system" elif sharegpt_from == "human": role_name = "user" elif sharegpt_from == "human-chat": role_name = "user" sharegpt_value = f"{turn['name'].strip()}: {sharegpt_value}" elif sharegpt_from == "gpt": role_name = "model" elif sharegpt_from == "gpt-chat": role_name = "model" sharegpt_value = f"{turn['name'].strip()}: {sharegpt_value}" else: LOG.warning(f"'from' contains an unhandled string: {sharegpt_from}") exit() # Get tokens which will be masked out if using train_on_inputs: false prefix = self._tokenize( f"{add_new_line}{role_name}\n", add_eos_token=False, strip_bos_token=strip_bos, ) # Get entire tokenized turn res = self._tokenize( f"{add_new_line}{role_name}\n" f"{sharegpt_value.strip()}", add_eos_token=end_of_text, strip_bos_token=strip_bos, ) # Handle masked user turn if ( self.train_on_inputs is False and ( sharegpt_from == "system" or sharegpt_from == "human" or sharegpt_from == "human-chat" ) ): labels = [IGNORE_TOKEN_ID] * len(res["input_ids"]) # Handle partially masked model turn elif ( self.train_on_inputs is False and ( sharegpt_from == "gpt" or sharegpt_from == "gpt-chat" ) ): labels = ( [IGNORE_TOKEN_ID] * len(prefix["input_ids"]) # Mask the prefix + [*copy.deepcopy(res["input_ids"])][len(prefix["input_ids"]):] ) # Handle unmasked turn else: labels = res["input_ids"] # Parse tokenized result and update current length result, current_len = parse_tokenized_to_result( result, current_len, res, labels, pad_token_id=self.tokenizer.pad_token_id, ) return result # TODO: Remove this as it doesn't get used class CustomGemma2Prompter: """ Prompter for CustomGemma2. """ def __init__(self, *args, **kwargs): # Constructor does nothing pass # Function to load the CustomGemma2PromptTokenizingStrategy def load(tokenizer, cfg): return CustomGemma2PromptTokenizingStrategy( CustomGemma2Prompter(), # TODO: Remove this as it doesn't get used tokenizer, cfg.train_on_inputs, cfg.sequence_len )