|
|
|
|
|
import csv
|
|
import json
|
|
import os
|
|
|
|
import datasets
|
|
|
|
_CITATION = """\
|
|
@InProceedings{huggingface:dataset,
|
|
title = {Boat dataset},
|
|
author={XXX, Inc.},
|
|
year={2024}
|
|
}
|
|
"""
|
|
|
|
_DESCRIPTION = """\
|
|
This dataset is designed to solve an object detection task with images of boats.
|
|
"""
|
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/ChiJuiChen/Boat_dataset/resolve/main"
|
|
|
|
_LICENSE = ""
|
|
|
|
_URLS = {
|
|
"classes": f"{_HOMEPAGE}/data/classes.txt",
|
|
"train": f"{_HOMEPAGE}/data/instances_train2023r.jsonl",
|
|
"val": f"{_HOMEPAGE}/data/instances_val2023r.jsonl",
|
|
}
|
|
|
|
class BoatDataset(datasets.GeneratorBasedBuilder):
|
|
|
|
VERSION = datasets.Version("1.1.0")
|
|
|
|
BUILDER_CONFIGS = [
|
|
datasets.BuilderConfig(name="Boat_dataset", version=VERSION, description="Dataset for detecting boats in aerial images."),
|
|
]
|
|
|
|
DEFAULT_CONFIG_NAME = "Boat_dataset"
|
|
|
|
def _info(self):
|
|
return datasets.DatasetInfo(
|
|
description=_DESCRIPTION,
|
|
features=datasets.Features({
|
|
'image_id': datasets.Value('int32'),
|
|
'image_path': datasets.Value('string'),
|
|
'width': datasets.Value('int32'),
|
|
'height': datasets.Value('int32'),
|
|
'objects': datasets.Features({
|
|
'id': datasets.Sequence(datasets.Value('int32')),
|
|
'area': datasets.Sequence(datasets.Value('float32')),
|
|
'bbox': datasets.Sequence(datasets.Sequence(datasets.Value('float32'), length=4)),
|
|
'category': datasets.Sequence(datasets.Value('int32'))
|
|
}),
|
|
}),
|
|
homepage=_HOMEPAGE,
|
|
license=_LICENSE,
|
|
citation=_CITATION,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
|
|
downloaded_files = dl_manager.download_and_extract(_URLS)
|
|
|
|
|
|
with open('classes.txt', 'r') as file:
|
|
classes = [line.strip() for line in file.readlines()]
|
|
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={
|
|
"annotations_file": downloaded_files["train"],
|
|
"classes": classes,
|
|
"split": "train",
|
|
}
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.VALIDATION,
|
|
gen_kwargs={
|
|
"annotations_file": downloaded_files["val"],
|
|
"classes": classes,
|
|
"split": "val",
|
|
}
|
|
),
|
|
]
|
|
|
|
def _generate_examples(self, annotations_file, classes, split):
|
|
|
|
with open(annotations_file, encoding="utf-8") as f:
|
|
for key, row in enumerate(f):
|
|
try:
|
|
data = json.loads(row.strip())
|
|
yield key, {
|
|
"image_id": data["image_id"],
|
|
"image_path": data["image_path"],
|
|
"width": data["width"],
|
|
"height": data["height"],
|
|
"objects": data["objects"],
|
|
}
|
|
except json.JSONDecodeError:
|
|
print(f"Skipping invalid JSON at line {key + 1}: {row}")
|
|
continue
|
|
|