--- configs: - config_name: default data_files: - split: test path: data/test-* - split: train path: data/train-* - split: validation path: data/validation-* dataset_info: features: - name: tokens sequence: string - name: ner_tags sequence: int64 - name: dataset dtype: string splits: - name: test num_bytes: 16147720 num_examples: 42144 - name: train num_bytes: 161576681 num_examples: 349195 - name: validation num_bytes: 12398792 num_examples: 33464 download_size: 43074463 dataset_size: 190123193 task_categories: - token-classification language: - fr size_categories: - 100K and creat a new val set from 5% of train created, i.e.
15,721 train / 827 validation / 857 test| | [Multinerd](https://huggingface.co/datasets/Babelscape/multinerd)| 140,880 train / 17,610 val / 17,695 test | | | [Pii-masking-200k](https://huggingface.co/datasets/ai4privacy/pii-masking-200k)| 61,958 train / 0 validation / 0 test | Only dataset without duplicate data or leaks | | [Wikiann](https://huggingface.co/datasets/wikiann)| 20,000 train / 10,000 val / 10,000 test | | | [Wikiner](https://huggingface.co/datasets/Jean-Baptiste/wikiner_fr)| 120,682 train / 0 validation / 13,410 test | In practice, 5% of val created from train set, i.e.
113,296 train / 5,994 validation / 13,393 test | ## Removing duplicate data and leaks The sum of the values of the datasets listed here gives the following result: ``` DatasetDict({ train: Dataset({ features: ['tokens', 'ner_tags', 'dataset'], num_rows: 351855 }) validation: Dataset({ features: ['tokens', 'ner_tags', 'dataset'], num_rows: 34431 }) test: Dataset({ features: ['tokens', 'ner_tags', 'dataset'], num_rows: 41945 }) }) ``` However, a data item in training split A may not be in A's test split, but may be present in B's test set, creating a leak when we create the A+B dataset. The same logic applies to duplicate data. So we need to make sure we remove them. After our clean-up, we finally have the following numbers: ``` DatasetDict({ train: Dataset({ features: ['tokens', 'ner_tags', 'dataset'], num_rows: 346071 }) validation: Dataset({ features: ['tokens', 'ner_tags', 'dataset'], num_rows: 32951 }) test: Dataset({ features: ['tokens', 'ner_tags', 'dataset'], num_rows: 41242 }) }) ``` Note: in practice, the test split contains 8 lines which we failed to deduplicate, i.e. 0.019%. ### Details of entities (after cleaning)

Datasets

Splits

O

PER

LOC

ORG

Multiconer

train

200,093

18,060

7,165

6,967

validation

10,900

1,069

389

328

test

11,287

979

387

381

Multinerd

train

3,041,998

149,128

105,531

68,796

validation

410,934

17,479

13,988

3,475

test

417,886

18,567

14,083

3,636

Pii-masking-200k

train

2,405,215

29,838

42,154

12,310

Wikiann

train

60,165

20,288

17,033

24,429

validation

30,046

10,098

8,698

12,819

test

31,488

10,764

9,512

13,480

Wikiner

train

2,691,294

110,079

131,839

38,988

validation

140,935

5,481

7,204

2,121

test

313,210

13,324

15,213

3,894

Total

train

8,398,765

327,393

303,722

151,490

validation

592,815

34,127

30,279

18,743

test

773,871

43,634

39,195

21,391
## Columns ``` dataset_train = dataset['train'].to_pandas() dataset_train.head() tokens ner_tags dataset 0 [On, a, souvent, voulu, faire, de, La, Bruyère... [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, ... wikiner 1 [Les, améliorations, apportées, par, rapport, ... [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, ... wikiner 2 [Cette, assemblée, de, notables, ,, réunie, en... [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, ... wikiner 3 [Wittgenstein, projetait, en, effet, d', élabo... [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... wikiner 4 [Le, premier, écrivain, à, écrire, des, fictio... [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, ... wikiner ``` - the `tokens` column contains the tokens - the `ner_tags` column contains the NER tags (IOB format with 0="O", 1="PER", 2="ORG" and 3="LOC") - the `dataset` column identifies the row's original dataset (if you wish to apply filters to it) ## Split - `train` corresponds to the concatenation of `multiconer` + `multinerd` + `pii-masking-200k` + `wikiann` + `wikiner` - `validation` corresponds to the concatenation of `multiconer` + `multinerd` + `wikiann` + `wikiner` - `test` corresponds to the concatenation of `multiconer` + `multinerd` + `wikiann` + `wikiner` # Citations ### multiconer ``` @inproceedings{multiconer2-report, title={{SemEval-2023 Task 2: Fine-grained Multilingual Named Entity Recognition (MultiCoNER 2)}}, author={Fetahu, Besnik and Kar, Sudipta and Chen, Zhiyu and Rokhlenko, Oleg and Malmasi, Shervin}, booktitle={Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)}, year={2023}, publisher={Association for Computational Linguistics}} @article{multiconer2-data, title={{MultiCoNER v2: a Large Multilingual dataset for Fine-grained and Noisy Named Entity Recognition}}, author={Fetahu, Besnik and Chen, Zhiyu and Kar, Sudipta and Rokhlenko, Oleg and Malmasi, Shervin}, year={2023}} ``` ### multinerd ``` @inproceedings{tedeschi-navigli-2022-multinerd, title = "{M}ulti{NERD}: A Multilingual, Multi-Genre and Fine-Grained Dataset for Named Entity Recognition (and Disambiguation)", author = "Tedeschi, Simone and Navigli, Roberto", booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.findings-naacl.60", doi = "10.18653/v1/2022.findings-naacl.60", pages = "801--812"} ``` ### pii-masking-200k ``` @misc {ai4privacy_2023, author = { {ai4Privacy} }, title = { pii-masking-200k (Revision 1d4c0a1) }, year = 2023, url = { https://huggingface.co/datasets/ai4privacy/pii-masking-200k }, doi = { 10.57967/hf/1532 }, publisher = { Hugging Face }} ``` ### wikiann ``` @inproceedings{rahimi-etal-2019-massively, title = "Massively Multilingual Transfer for {NER}", author = "Rahimi, Afshin and Li, Yuan and Cohn, Trevor", booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", month = jul, year = "2019", address = "Florence, Italy", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P19-1015", pages = "151--164"} ``` ### wikiner ``` @article{NOTHMAN2013151, title = {Learning multilingual named entity recognition from Wikipedia}, journal = {Artificial Intelligence}, volume = {194}, pages = {151-175}, year = {2013}, note = {Artificial Intelligence, Wikipedia and Semi-Structured Resources}, issn = {0004-3702}, doi = {https://doi.org/10.1016/j.artint.2012.03.006}, url = {https://www.sciencedirect.com/science/article/pii/S0004370212000276}, author = {Joel Nothman and Nicky Ringland and Will Radford and Tara Murphy and James R. Curran}} ``` ### frenchNER_3entities ``` @misc {frenchNER2024, author = { {BOURDOIS, Loïck} }, organization = { {Centre Aquitain des Technologies de l'Information et Electroniques} }, title = { frenchNER_3entities }, year = 2024, url = { https://huggingface.co/CATIE-AQ/frenchNER_3entities }, doi = { 10.57967/hf/1751 }, publisher = { Hugging Face } } ``` # License [cc-by-4.0](https://creativecommons.org/licenses/by/4.0/deed.en)