--- dataset_info: features: - name: image dtype: image - name: mask dtype: image - name: label dtype: int64 splits: - name: candle.train num_bytes: 106451773.0 num_examples: 900 - name: candle.test num_bytes: 23359449.0 num_examples: 200 - name: capsules.train num_bytes: 133021141.0 num_examples: 542 - name: capsules.test num_bytes: 39865980.0 num_examples: 160 - name: cashew.train num_bytes: 135528457.0 num_examples: 450 - name: cashew.test num_bytes: 48713873.0 num_examples: 150 - name: chewinggum.train num_bytes: 63491934.0 num_examples: 453 - name: chewinggum.test num_bytes: 21472874.0 num_examples: 150 - name: fryum.train num_bytes: 63780392.0 num_examples: 450 - name: fryum.test num_bytes: 21646212.0 num_examples: 150 - name: macaroni1.train num_bytes: 105415318.0 num_examples: 900 - name: macaroni1.test num_bytes: 24090768.0 num_examples: 200 - name: macaroni2.train num_bytes: 100349144.0 num_examples: 900 - name: macaroni2.test num_bytes: 22470288.0 num_examples: 200 - name: pcb1.train num_bytes: 244978923.0 num_examples: 904 - name: pcb1.test num_bytes: 53521326.0 num_examples: 200 - name: pcb2.train num_bytes: 224276308.0 num_examples: 901 - name: pcb2.test num_bytes: 51075179.0 num_examples: 200 - name: pcb3.train num_bytes: 127418394.0 num_examples: 905 - name: pcb3.test num_bytes: 28467534.0 num_examples: 201 - name: pcb4.train num_bytes: 192400641.0 num_examples: 904 - name: pcb4.test num_bytes: 44329307.0 num_examples: 201 - name: pipe_fryum.train num_bytes: 42230565.0 num_examples: 450 - name: pipe_fryum.test num_bytes: 14593580.0 num_examples: 150 download_size: 1917906073 dataset_size: 1932949360.0 configs: - config_name: default data_files: - split: candle.train path: data/candle.train-* - split: candle.test path: data/candle.test-* - split: capsules.train path: data/capsules.train-* - split: capsules.test path: data/capsules.test-* - split: cashew.train path: data/cashew.train-* - split: cashew.test path: data/cashew.test-* - split: chewinggum.train path: data/chewinggum.train-* - split: chewinggum.test path: data/chewinggum.test-* - split: fryum.train path: data/fryum.train-* - split: fryum.test path: data/fryum.test-* - split: macaroni1.train path: data/macaroni1.train-* - split: macaroni1.test path: data/macaroni1.test-* - split: macaroni2.train path: data/macaroni2.train-* - split: macaroni2.test path: data/macaroni2.test-* - split: pcb1.train path: data/pcb1.train-* - split: pcb1.test path: data/pcb1.test-* - split: pcb2.train path: data/pcb2.train-* - split: pcb2.test path: data/pcb2.test-* - split: pcb3.train path: data/pcb3.train-* - split: pcb3.test path: data/pcb3.test-* - split: pcb4.train path: data/pcb4.train-* - split: pcb4.test path: data/pcb4.test-* - split: pipe_fryum.train path: data/pipe_fryum.train-* - split: pipe_fryum.test path: data/pipe_fryum.test-* --- Original dataset: ``` @inproceedings{zou2022spot, title={Spot-the-difference self-supervised pre-training for anomaly detection and segmentation}, author={Zou, Yang and Jeong, Jongheon and Pemula, Latha and Zhang, Dongqing and Dabeer, Onkar}, booktitle={European Conference on Computer Vision}, pages={392--408}, year={2022}, organization={Springer} } ```