--- dataset_info: - config_name: default features: - name: utterance dtype: string - name: label sequence: int64 splits: - name: train num_bytes: 396298199 num_examples: 55000 - name: test num_bytes: 59593199 num_examples: 5000 download_size: 189778506 dataset_size: 455891398 - config_name: intents features: - name: id dtype: int64 - name: name dtype: 'null' - name: tags sequence: 'null' - name: regexp_full_match sequence: 'null' - name: regexp_partial_match sequence: 'null' - name: description dtype: 'null' splits: - name: intents num_bytes: 420 num_examples: 21 download_size: 2970 dataset_size: 420 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - config_name: intents data_files: - split: intents path: intents/intents-* task_categories: - text-classification language: - en --- # eurlex This is a text classification dataset. It is intended for machine learning research and experimentation. This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html). ## Usage It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python from autointent import Dataset eurlex = Dataset.from_datasets("AutoIntent/eurlex") ``` ## Source This dataset is taken from `coastalcph/multi_eurlex` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python from datasets import load_dataset from autointent import Dataset eurlex = load_dataset("coastalcph/multi_eurlex", "en", trust_remote_code=True) labels = [] def transform(example: dict): for intent in example["labels"]: labels.append(intent) return {"utterance": example["text"], "label": example["labels"]} labels = [{"id": label, "name": None} for label in set(labels)] multilabel_eurlex_train = eurlex["train"].map(transform, remove_columns=eurlex["train"].features.keys()) multilabel_eurlex_test = eurlex["test"].map(transform, remove_columns=eurlex["test"].features.keys()) eurlex_converted = Dataset.from_dict({ "intents": labels, "test": multilabel_eurlex_test.to_list(), "train": multilabel_eurlex_train.to_list() }) ```