File size: 4,072 Bytes
76a5c1c 739f10e 76a5c1c 739f10e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
dataset_info:
features:
- name: Prompt
dtype: string
- name: Category
dtype: string
- name: Challenge
dtype: string
- name: Note
dtype: string
- name: images
dtype: image
- name: model_name
dtype: string
- name: seed
dtype: int64
- name: upvotes
dtype: int64
splits:
- name: train
num_bytes: 25650684.0
num_examples: 219
download_size: 25640015
dataset_size: 25650684.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# SDXL
All images included in this dataset were voted as "Not solved" by the community in https://huggingface.co/spaces/OpenGenAI/open-parti-prompts.
This means that according to the community the model did not generate an image that corresponds sufficiently enough to the prompt.
The following script was used to generate the images:
```py
import torch
from datasets import Dataset, Features
from datasets import Image as ImageFeature
from datasets import Value, load_dataset
from diffusers import DDIMScheduler, DiffusionPipeline
import PIL
def main():
print("Loading dataset...")
parti_prompts = load_dataset("nateraw/parti-prompts", split="train")
print("Loading pipeline...")
ckpt_id = "stabilityai/stable-diffusion-xl-base-1.0"
refiner_ckpt_id = "stabilityai/stable-diffusion-xl-refiner-1.0"
pipe = DiffusionPipeline.from_pretrained(
ckpt_id, torch_dtype=torch.float16, use_auth_token=True
).to("cuda")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=True)
refiner = DiffusionPipeline.from_pretrained(
refiner_ckpt_id,
torch_dtype=torch.float16,
use_auth_token=True
).to("cuda")
refiner.scheduler = DDIMScheduler.from_config(refiner.scheduler.config)
refiner.set_progress_bar_config(disable=True)
seed = 0
generator = torch.Generator("cuda").manual_seed(seed)
print("Running inference...")
main_dict = {}
for i in range(len(parti_prompts)):
sample = parti_prompts[i]
prompt = sample["Prompt"]
latent = pipe(
prompt,
generator=generator,
num_inference_steps=100,
guidance_scale=7.5,
output_type="latent",
).images[0]
image_refined = refiner(
prompt=prompt,
image=latent[None, :],
generator=generator,
num_inference_steps=100,
guidance_scale=7.5,
).images[0]
image = image_refined.resize((256, 256), resample=PIL.Image.Resampling.LANCZOS)
img_path = f"sd_xl_{i}.png"
image.save(img_path)
main_dict.update(
{
prompt: {
"img_path": img_path,
"Category": sample["Category"],
"Challenge": sample["Challenge"],
"Note": sample["Note"],
"model_name": ckpt_id,
"seed": seed,
}
}
)
def generation_fn():
for prompt in main_dict:
prompt_entry = main_dict[prompt]
yield {
"Prompt": prompt,
"Category": prompt_entry["Category"],
"Challenge": prompt_entry["Challenge"],
"Note": prompt_entry["Note"],
"images": {"path": prompt_entry["img_path"]},
"model_name": prompt_entry["model_name"],
"seed": prompt_entry["seed"],
}
print("Preparing HF dataset...")
ds = Dataset.from_generator(
generation_fn,
features=Features(
Prompt=Value("string"),
Category=Value("string"),
Challenge=Value("string"),
Note=Value("string"),
images=ImageFeature(),
model_name=Value("string"),
seed=Value("int64"),
),
)
ds_id = "diffusers-parti-prompts/sdxl-1.0-refiner"
ds.push_to_hub(ds_id)
if __name__ == "__main__":
main()
``` |