|
import torch |
|
import torchaudio |
|
import time |
|
import os |
|
import numpy as np |
|
import json |
|
from datasets import load_dataset, Audio |
|
from snac import SNAC |
|
from torch.nn import functional as F |
|
from tqdm import tqdm |
|
import wandb |
|
|
|
|
|
SNAC_SAMPLE_RATE = 24000 |
|
OUTPUT_DIR = "processed_common_voice" |
|
BATCH_SIZE = 1000 |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
def load_snac_model(sample_rate): |
|
if sample_rate == 24000: |
|
model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(device) |
|
else: |
|
raise ValueError("Unsupported sample rate. Please use 24000.") |
|
return model |
|
|
|
snac_model = load_snac_model(SNAC_SAMPLE_RATE) |
|
|
|
def chunk_and_pad_audio(audio, chunk_size): |
|
length = audio.shape[-1] |
|
padded_length = ((length + chunk_size - 1) // chunk_size) * chunk_size |
|
padded_audio = F.pad(audio, (0, padded_length - length), mode="constant", value=0) |
|
batched_audio = padded_audio.unfold(-1, size=chunk_size, step=chunk_size) |
|
return batched_audio |
|
|
|
def generate_snac_encoding(audio): |
|
waveform = torch.tensor(audio["array"]).float().to(device) |
|
if audio["sampling_rate"] != SNAC_SAMPLE_RATE: |
|
resampler = torchaudio.transforms.Resample( |
|
orig_freq=audio["sampling_rate"], new_freq=SNAC_SAMPLE_RATE |
|
) |
|
waveform = resampler(waveform) |
|
|
|
if waveform.dim() == 2: |
|
waveform = waveform.mean(dim=0, keepdim=True) |
|
elif waveform.dim() == 1: |
|
waveform = waveform.unsqueeze(0) |
|
|
|
num_second = 1 |
|
chunk_size_initial = num_second * SNAC_SAMPLE_RATE |
|
lcm = np.lcm.reduce([snac_model.vq_strides[0], snac_model.attn_window_size or 1]) |
|
pad_to = snac_model.hop_length * lcm |
|
chunk_size = int(np.ceil(chunk_size_initial / pad_to) * pad_to) |
|
|
|
audio = chunk_and_pad_audio(waveform, chunk_size) |
|
audio = audio.permute(1, 0, 2) |
|
|
|
codes_list = [] |
|
with torch.no_grad(): |
|
for chunk in audio: |
|
codes = snac_model.encode(chunk.unsqueeze(0)) |
|
codes = [c.cpu() for c in codes] |
|
codes_list.append(codes) |
|
|
|
codes_list = [torch.cat(codes_list, dim=0) for codes_list in zip(*codes_list)] |
|
codes_list = [code.reshape(-1).cpu().tolist() for code in codes_list] |
|
|
|
string_codes = " ".join(map(str, codes_list[0])) |
|
return string_codes |
|
|
|
def process_audio(item): |
|
start_time = time.time() |
|
try: |
|
snac_tokens = generate_snac_encoding(item["audio"]) |
|
|
|
if not snac_tokens: |
|
raise ValueError("Generated SNAC tokens are empty") |
|
|
|
except Exception as e: |
|
return None |
|
|
|
processing_time = time.time() - start_time |
|
|
|
return { |
|
"path": item["path"], |
|
"sentence": item["sentence"], |
|
"age": item["age"], |
|
"gender": item["gender"], |
|
"accent": item["accent"], |
|
"locale": item["locale"], |
|
"snac": snac_tokens, |
|
"processing_time": processing_time, |
|
"audio_duration": len(item["audio"]["array"]) / item["audio"]["sampling_rate"], |
|
} |
|
|
|
def save_to_jsonl(data, file_path): |
|
|
|
with open(file_path, "a") as f: |
|
for item in data: |
|
json.dump(item, f) |
|
f.write("\n") |
|
|
|
def process_language(language): |
|
|
|
language_dir = os.path.join(OUTPUT_DIR, language) |
|
os.makedirs(language_dir, exist_ok=True) |
|
jsonl_path = os.path.join(language_dir, f"{language}_processed.jsonl") |
|
|
|
|
|
existing_data = set() |
|
if os.path.exists(jsonl_path): |
|
with open(jsonl_path, "r") as f: |
|
existing_data = set(f.readlines()) |
|
|
|
|
|
dataset = load_dataset( |
|
"mozilla-foundation/common_voice_16_1", language, split="train", streaming=True |
|
) |
|
|
|
|
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=SNAC_SAMPLE_RATE)) |
|
|
|
processed_data = [] |
|
total_processed = 0 |
|
report_counter = 0 |
|
|
|
for item in tqdm(dataset, desc=f"Processing {language}"): |
|
result = process_audio(item) |
|
if result: |
|
json_line = json.dumps(result) + "\n" |
|
if json_line not in existing_data: |
|
processed_data.append(result) |
|
existing_data.add(json_line) |
|
total_processed += 1 |
|
report_counter += 1 |
|
|
|
if report_counter % 1000 == 0: |
|
wandb.log( |
|
{ |
|
"language": language, |
|
"average_processing_time": np.mean( |
|
[item["processing_time"] for item in processed_data] |
|
), |
|
"average_audio_duration": np.mean( |
|
[item["audio_duration"] for item in processed_data] |
|
), |
|
"average_snac_token_count": np.mean( |
|
[len(item["snac"].split()) for item in processed_data] |
|
), |
|
} |
|
) |
|
report_counter = 0 |
|
|
|
|
|
if len(processed_data) >= BATCH_SIZE: |
|
save_to_jsonl(processed_data, jsonl_path) |
|
processed_data = [] |
|
|
|
|
|
if processed_data: |
|
save_to_jsonl(processed_data, jsonl_path) |
|
|
|
return total_processed |
|
|
|
def main(): |
|
|
|
wandb.init(project="common-voice-processing", job_type="data-processing") |
|
|
|
|
|
languages = ['ckb', 'cnh', 'cs', 'cv', 'cy', 'da', 'de'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
total_processed_all_languages = 0 |
|
|
|
|
|
for language in languages: |
|
total_processed = process_language(language) |
|
total_processed_all_languages += total_processed |
|
|
|
print( |
|
f"\nCompleted processing all languages. Total files processed across all languages: {total_processed_all_languages}" |
|
) |
|
|
|
wandb.finish() |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|