#!/bin/bash
# LoRA train script by @Akegarasu

# Train data path | 设置训练用模型、图片
pretrained_model="./sd-models/model.ckpt" # base model path | 底模路径
model_type="sd1.5"                        # option: sd1.5 sd2.0 sdxl | 可选 sd1.5 sd2.0 sdxl。SD2.0模型 2.0模型下 clip_skip 默认无效
parameterization=0                        # parameterization | 参数化 本参数需要在 model_type 为 sd2.0 时才可启用

train_data_dir="./train/aki" # train dataset path | 训练数据集路径
reg_data_dir=""              # directory for regularization images | 正则化数据集路径,默认不使用正则化图像。

# Network settings | 网络设置
network_module="networks.lora" # 在这里将会设置训练的网络种类,默认为 networks.lora 也就是 LoRA 训练。如果你想训练 LyCORIS(LoCon、LoHa) 等,则修改这个值为 lycoris.kohya
network_weights=""             # pretrained weights for LoRA network | 若需要从已有的 LoRA 模型上继续训练,请填写 LoRA 模型路径。
network_dim=32                 # network dim | 常用 4~128,不是越大越好
network_alpha=32               # network alpha | 常用与 network_dim 相同的值或者采用较小的值,如 network_dim的一半 防止下溢。默认值为 1,使用较小的 alpha 需要提升学习率。

# Train related params | 训练相关参数
resolution="512,512"  # image resolution w,h. 图片分辨率,宽,高。支持非正方形,但必须是 64 倍数。
batch_size=1          # batch size
max_train_epoches=10  # max train epoches | 最大训练 epoch
save_every_n_epochs=2 # save every n epochs | 每 N 个 epoch 保存一次

train_unet_only=0            # train U-Net only | 仅训练 U-Net,开启这个会牺牲效果大幅减少显存使用。6G显存可以开启
train_text_encoder_only=0    # train Text Encoder only | 仅训练 文本编码器
stop_text_encoder_training=0 # stop text encoder training | 在第N步时停止训练文本编码器

noise_offset="0" # noise offset | 在训练中添加噪声偏移来改良生成非常暗或者非常亮的图像,如果启用,推荐参数为0.1
keep_tokens=0    # keep heading N tokens when shuffling caption tokens | 在随机打乱 tokens 时,保留前 N 个不变。
min_snr_gamma=0  # minimum signal-to-noise ratio (SNR) value for gamma-ray | 伽马射线事件的最小信噪比(SNR)值  默认为 0

# Learning rate | 学习率
lr="1e-4"                           # learning rate | 学习率,在分别设置下方 U-Net 和 文本编码器 的学习率时,该参数失效
unet_lr="1e-4"                      # U-Net learning rate | U-Net 学习率
text_encoder_lr="1e-5"              # Text Encoder learning rate | 文本编码器 学习率
lr_scheduler="cosine_with_restarts" # "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup", "adafactor"
lr_warmup_steps=0                   # warmup steps | 学习率预热步数,lr_scheduler 为 constant 或 adafactor 时该值需要设为0。
lr_restart_cycles=1                 # cosine_with_restarts restart cycles | 余弦退火重启次数,仅在 lr_scheduler 为 cosine_with_restarts 时起效。

# Optimizer settings | 优化器设置
optimizer_type="AdamW8bit" # Optimizer type | 优化器类型 默认为 AdamW8bit,可选:AdamW AdamW8bit Lion Lion8bit SGDNesterov SGDNesterov8bit DAdaptation AdaFactor prodigy

# Output settings | 输出设置
output_name="aki"           # output model name | 模型保存名称
save_model_as="safetensors" # model save ext | 模型保存格式 ckpt, pt, safetensors

# Resume training state | 恢复训练设置
save_state=0 # save state | 保存训练状态 名称类似于 <output_name>-??????-state ?????? 表示 epoch 数
resume=""    # resume from state | 从某个状态文件夹中恢复训练 需配合上方参数同时使用 由于规范文件限制 epoch 数和全局步数不会保存 即使恢复时它们也从 1 开始 与 network_weights 的具体实现操作并不一致

# 其他设置
min_bucket_reso=256              # arb min resolution | arb 最小分辨率
max_bucket_reso=1024             # arb max resolution | arb 最大分辨率
persistent_data_loader_workers=1 # persistent dataloader workers | 保留加载训练集的worker,减少每个 epoch 之间的停顿
clip_skip=2                      # clip skip | 玄学 一般用 2
multi_gpu=0                      # multi gpu | 多显卡训练 该参数仅限在显卡数 >= 2 使用
lowram=0                         # lowram mode | 低内存模式 该模式下会将 U-net 文本编码器 VAE 转移到 GPU 显存中 启用该模式可能会对显存有一定影响

# LyCORIS 训练设置
algo="lora"  # LyCORIS network algo | LyCORIS 网络算法 可选 lora、loha、lokr、ia3、dylora。lora即为locon
conv_dim=4   # conv dim | 类似于 network_dim,推荐为 4
conv_alpha=4 # conv alpha | 类似于 network_alpha,可以采用与 conv_dim 一致或者更小的值
dropout="0"  # dropout | dropout 概率, 0 为不使用 dropout, 越大则 dropout 越多,推荐 0~0.5, LoHa/LoKr/(IA)^3暂时不支持

# Remote logging | 远程记录设置
use_wandb=0         # use_wandb | 启用wandb远程记录功能
wandb_api_key=""    # wandb_api_key | API,通过 https://wandb.ai/authorize 获取
log_tracker_name="" # log_tracker_name | wandb项目名称,留空则为"network_train"

# ============= DO NOT MODIFY CONTENTS BELOW | 请勿修改下方内容 =====================
export HF_HOME="huggingface"
export TF_CPP_MIN_LOG_LEVEL=3

extArgs=()
launchArgs=()

trainer_file="./sd-scripts/train_network.py"

if [ $model_type == "sd1.5" ]; then
  ext_args+=("--clip_skip=$clip_skip")
elif [ $model_type == "sd2.0" ]; then
  ext_args+=("--v2")
elif [ $model_type == "sdxl" ]; then
  trainer_file="./sd-scripts/sdxl_train_network.py"
fi

if [[ $multi_gpu == 1 ]]; then
  launchArgs+=("--multi_gpu")
  launchArgs+=("--num_processes=2")
fi

if [[ $lowram ]]; then extArgs+=("--lowram"); fi

if [[ $parameterization == 1 ]]; then extArgs+=("--v_parameterization"); fi

if [[ $train_unet_only == 1 ]]; then extArgs+=("--network_train_unet_only"); fi

if [[ $train_text_encoder_only == 1 ]]; then extArgs+=("--network_train_text_encoder_only"); fi

if [[ $network_weights ]]; then extArgs+=("--network_weights $network_weights"); fi

if [[ $reg_data_dir ]]; then extArgs+=("--reg_data_dir $reg_data_dir"); fi

if [[ $optimizer_type ]]; then extArgs+=("--optimizer_type $optimizer_type"); fi

if [[ $optimizer_type == "DAdaptation" ]]; then extArgs+=("--optimizer_args decouple=True"); fi

if [[ $save_state == 1 ]]; then extArgs+=("--save_state"); fi

if [[ $resume ]]; then extArgs+=("--resume $resume"); fi

if [[ $persistent_data_loader_workers == 1 ]]; then extArgs+=("--persistent_data_loader_workers"); fi

if [[ $network_module == "lycoris.kohya" ]]; then
  extArgs+=("--network_args conv_dim=$conv_dim conv_alpha=$conv_alpha algo=$algo dropout=$dropout")
fi

if [[ $stop_text_encoder_training -ne 0 ]]; then extArgs+=("--stop_text_encoder_training $stop_text_encoder_training"); fi

if [[ $noise_offset != "0" ]]; then extArgs+=("--noise_offset $noise_offset"); fi

if [[ $min_snr_gamma -ne 0 ]]; then extArgs+=("--min_snr_gamma $min_snr_gamma"); fi

if [[ $use_wandb == 1 ]]; then
  extArgs+=("--log_with=all")
  if [[ $wandb_api_key ]]; then extArgs+=("--wandb_api_key $wandb_api_key"); fi
  if [[ $log_tracker_name ]]; then extArgs+=("--log_tracker_name $log_tracker_name"); fi
else
  extArgs+=("--log_with=tensorboard")
fi

python -m accelerate.commands.launch ${launchArgs[@]} --num_cpu_threads_per_process=4 $trainer_file \
  --enable_bucket \
  --pretrained_model_name_or_path=$pretrained_model \
  --train_data_dir=$train_data_dir \
  --output_dir="./output" \
  --logging_dir="./logs" \
  --log_prefix=$output_name \
  --resolution=$resolution \
  --network_module=$network_module \
  --max_train_epochs=$max_train_epoches \
  --learning_rate=$lr \
  --unet_lr=$unet_lr \
  --text_encoder_lr=$text_encoder_lr \
  --lr_scheduler=$lr_scheduler \
  --lr_warmup_steps=$lr_warmup_steps \
  --lr_scheduler_num_cycles=$lr_restart_cycles \
  --network_dim=$network_dim \
  --network_alpha=$network_alpha \
  --output_name=$output_name \
  --train_batch_size=$batch_size \
  --save_every_n_epochs=$save_every_n_epochs \
  --mixed_precision="fp16" \
  --save_precision="fp16" \
  --seed="1337" \
  --cache_latents \
  --prior_loss_weight=1 \
  --max_token_length=225 \
  --caption_extension=".txt" \
  --save_model_as=$save_model_as \
  --min_bucket_reso=$min_bucket_reso \
  --max_bucket_reso=$max_bucket_reso \
  --keep_tokens=$keep_tokens \
  --xformers --shuffle_caption ${extArgs[@]}