ACCC1380 commited on
Commit
8eb6322
·
verified ·
1 Parent(s): b2eaa78

Upload lora-scripts/sd-scripts/library/config_util.py with huggingface_hub

Browse files
lora-scripts/sd-scripts/library/config_util.py ADDED
@@ -0,0 +1,714 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from dataclasses import (
3
+ asdict,
4
+ dataclass,
5
+ )
6
+ import functools
7
+ import random
8
+ from textwrap import dedent, indent
9
+ import json
10
+ from pathlib import Path
11
+
12
+ # from toolz import curry
13
+ from typing import (
14
+ List,
15
+ Optional,
16
+ Sequence,
17
+ Tuple,
18
+ Union,
19
+ )
20
+
21
+ import toml
22
+ import voluptuous
23
+ from voluptuous import (
24
+ Any,
25
+ ExactSequence,
26
+ MultipleInvalid,
27
+ Object,
28
+ Required,
29
+ Schema,
30
+ )
31
+ from transformers import CLIPTokenizer
32
+
33
+ from . import train_util
34
+ from .train_util import (
35
+ DreamBoothSubset,
36
+ FineTuningSubset,
37
+ ControlNetSubset,
38
+ DreamBoothDataset,
39
+ FineTuningDataset,
40
+ ControlNetDataset,
41
+ DatasetGroup,
42
+ )
43
+ from .utils import setup_logging
44
+
45
+ setup_logging()
46
+ import logging
47
+
48
+ logger = logging.getLogger(__name__)
49
+
50
+
51
+ def add_config_arguments(parser: argparse.ArgumentParser):
52
+ parser.add_argument(
53
+ "--dataset_config", type=Path, default=None, help="config file for detail settings / 詳細な設定用の設定ファイル"
54
+ )
55
+
56
+
57
+ # TODO: inherit Params class in Subset, Dataset
58
+
59
+
60
+ @dataclass
61
+ class BaseSubsetParams:
62
+ image_dir: Optional[str] = None
63
+ num_repeats: int = 1
64
+ shuffle_caption: bool = False
65
+ caption_separator: str = (",",)
66
+ keep_tokens: int = 0
67
+ keep_tokens_separator: str = (None,)
68
+ secondary_separator: Optional[str] = None
69
+ enable_wildcard: bool = False
70
+ color_aug: bool = False
71
+ flip_aug: bool = False
72
+ face_crop_aug_range: Optional[Tuple[float, float]] = None
73
+ random_crop: bool = False
74
+ caption_prefix: Optional[str] = None
75
+ caption_suffix: Optional[str] = None
76
+ caption_dropout_rate: float = 0.0
77
+ caption_dropout_every_n_epochs: int = 0
78
+ caption_tag_dropout_rate: float = 0.0
79
+ token_warmup_min: int = 1
80
+ token_warmup_step: float = 0
81
+
82
+
83
+ @dataclass
84
+ class DreamBoothSubsetParams(BaseSubsetParams):
85
+ is_reg: bool = False
86
+ class_tokens: Optional[str] = None
87
+ caption_extension: str = ".caption"
88
+ cache_info: bool = False
89
+
90
+
91
+ @dataclass
92
+ class FineTuningSubsetParams(BaseSubsetParams):
93
+ metadata_file: Optional[str] = None
94
+
95
+
96
+ @dataclass
97
+ class ControlNetSubsetParams(BaseSubsetParams):
98
+ conditioning_data_dir: str = None
99
+ caption_extension: str = ".caption"
100
+ cache_info: bool = False
101
+
102
+
103
+ @dataclass
104
+ class BaseDatasetParams:
105
+ tokenizer: Union[CLIPTokenizer, List[CLIPTokenizer]] = None
106
+ max_token_length: int = None
107
+ resolution: Optional[Tuple[int, int]] = None
108
+ network_multiplier: float = 1.0
109
+ debug_dataset: bool = False
110
+
111
+
112
+ @dataclass
113
+ class DreamBoothDatasetParams(BaseDatasetParams):
114
+ batch_size: int = 1
115
+ enable_bucket: bool = False
116
+ min_bucket_reso: int = 256
117
+ max_bucket_reso: int = 1024
118
+ bucket_reso_steps: int = 64
119
+ bucket_no_upscale: bool = False
120
+ prior_loss_weight: float = 1.0
121
+
122
+
123
+ @dataclass
124
+ class FineTuningDatasetParams(BaseDatasetParams):
125
+ batch_size: int = 1
126
+ enable_bucket: bool = False
127
+ min_bucket_reso: int = 256
128
+ max_bucket_reso: int = 1024
129
+ bucket_reso_steps: int = 64
130
+ bucket_no_upscale: bool = False
131
+
132
+
133
+ @dataclass
134
+ class ControlNetDatasetParams(BaseDatasetParams):
135
+ batch_size: int = 1
136
+ enable_bucket: bool = False
137
+ min_bucket_reso: int = 256
138
+ max_bucket_reso: int = 1024
139
+ bucket_reso_steps: int = 64
140
+ bucket_no_upscale: bool = False
141
+
142
+
143
+ @dataclass
144
+ class SubsetBlueprint:
145
+ params: Union[DreamBoothSubsetParams, FineTuningSubsetParams]
146
+
147
+
148
+ @dataclass
149
+ class DatasetBlueprint:
150
+ is_dreambooth: bool
151
+ is_controlnet: bool
152
+ params: Union[DreamBoothDatasetParams, FineTuningDatasetParams]
153
+ subsets: Sequence[SubsetBlueprint]
154
+
155
+
156
+ @dataclass
157
+ class DatasetGroupBlueprint:
158
+ datasets: Sequence[DatasetBlueprint]
159
+
160
+
161
+ @dataclass
162
+ class Blueprint:
163
+ dataset_group: DatasetGroupBlueprint
164
+
165
+
166
+ class ConfigSanitizer:
167
+ # @curry
168
+ @staticmethod
169
+ def __validate_and_convert_twodim(klass, value: Sequence) -> Tuple:
170
+ Schema(ExactSequence([klass, klass]))(value)
171
+ return tuple(value)
172
+
173
+ # @curry
174
+ @staticmethod
175
+ def __validate_and_convert_scalar_or_twodim(klass, value: Union[float, Sequence]) -> Tuple:
176
+ Schema(Any(klass, ExactSequence([klass, klass])))(value)
177
+ try:
178
+ Schema(klass)(value)
179
+ return (value, value)
180
+ except:
181
+ return ConfigSanitizer.__validate_and_convert_twodim(klass, value)
182
+
183
+ # subset schema
184
+ SUBSET_ASCENDABLE_SCHEMA = {
185
+ "color_aug": bool,
186
+ "face_crop_aug_range": functools.partial(__validate_and_convert_twodim.__func__, float),
187
+ "flip_aug": bool,
188
+ "num_repeats": int,
189
+ "random_crop": bool,
190
+ "shuffle_caption": bool,
191
+ "keep_tokens": int,
192
+ "keep_tokens_separator": str,
193
+ "secondary_separator": str,
194
+ "enable_wildcard": bool,
195
+ "token_warmup_min": int,
196
+ "token_warmup_step": Any(float, int),
197
+ "caption_prefix": str,
198
+ "caption_suffix": str,
199
+ }
200
+ # DO means DropOut
201
+ DO_SUBSET_ASCENDABLE_SCHEMA = {
202
+ "caption_dropout_every_n_epochs": int,
203
+ "caption_dropout_rate": Any(float, int),
204
+ "caption_tag_dropout_rate": Any(float, int),
205
+ }
206
+ # DB means DreamBooth
207
+ DB_SUBSET_ASCENDABLE_SCHEMA = {
208
+ "caption_extension": str,
209
+ "class_tokens": str,
210
+ "cache_info": bool,
211
+ }
212
+ DB_SUBSET_DISTINCT_SCHEMA = {
213
+ Required("image_dir"): str,
214
+ "is_reg": bool,
215
+ }
216
+ # FT means FineTuning
217
+ FT_SUBSET_DISTINCT_SCHEMA = {
218
+ Required("metadata_file"): str,
219
+ "image_dir": str,
220
+ }
221
+ CN_SUBSET_ASCENDABLE_SCHEMA = {
222
+ "caption_extension": str,
223
+ "cache_info": bool,
224
+ }
225
+ CN_SUBSET_DISTINCT_SCHEMA = {
226
+ Required("image_dir"): str,
227
+ Required("conditioning_data_dir"): str,
228
+ }
229
+
230
+ # datasets schema
231
+ DATASET_ASCENDABLE_SCHEMA = {
232
+ "batch_size": int,
233
+ "bucket_no_upscale": bool,
234
+ "bucket_reso_steps": int,
235
+ "enable_bucket": bool,
236
+ "max_bucket_reso": int,
237
+ "min_bucket_reso": int,
238
+ "resolution": functools.partial(__validate_and_convert_scalar_or_twodim.__func__, int),
239
+ "network_multiplier": float,
240
+ }
241
+
242
+ # options handled by argparse but not handled by user config
243
+ ARGPARSE_SPECIFIC_SCHEMA = {
244
+ "debug_dataset": bool,
245
+ "max_token_length": Any(None, int),
246
+ "prior_loss_weight": Any(float, int),
247
+ }
248
+ # for handling default None value of argparse
249
+ ARGPARSE_NULLABLE_OPTNAMES = [
250
+ "face_crop_aug_range",
251
+ "resolution",
252
+ ]
253
+ # prepare map because option name may differ among argparse and user config
254
+ ARGPARSE_OPTNAME_TO_CONFIG_OPTNAME = {
255
+ "train_batch_size": "batch_size",
256
+ "dataset_repeats": "num_repeats",
257
+ }
258
+
259
+ def __init__(self, support_dreambooth: bool, support_finetuning: bool, support_controlnet: bool, support_dropout: bool) -> None:
260
+ assert support_dreambooth or support_finetuning or support_controlnet, (
261
+ "Neither DreamBooth mode nor fine tuning mode nor controlnet mode specified. Please specify one mode or more."
262
+ + " / DreamBooth モードか fine tuning モードか controlnet モードのどれも指定されていません。1つ以上指定してください。"
263
+ )
264
+
265
+ self.db_subset_schema = self.__merge_dict(
266
+ self.SUBSET_ASCENDABLE_SCHEMA,
267
+ self.DB_SUBSET_DISTINCT_SCHEMA,
268
+ self.DB_SUBSET_ASCENDABLE_SCHEMA,
269
+ self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
270
+ )
271
+
272
+ self.ft_subset_schema = self.__merge_dict(
273
+ self.SUBSET_ASCENDABLE_SCHEMA,
274
+ self.FT_SUBSET_DISTINCT_SCHEMA,
275
+ self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
276
+ )
277
+
278
+ self.cn_subset_schema = self.__merge_dict(
279
+ self.SUBSET_ASCENDABLE_SCHEMA,
280
+ self.CN_SUBSET_DISTINCT_SCHEMA,
281
+ self.CN_SUBSET_ASCENDABLE_SCHEMA,
282
+ self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
283
+ )
284
+
285
+ self.db_dataset_schema = self.__merge_dict(
286
+ self.DATASET_ASCENDABLE_SCHEMA,
287
+ self.SUBSET_ASCENDABLE_SCHEMA,
288
+ self.DB_SUBSET_ASCENDABLE_SCHEMA,
289
+ self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
290
+ {"subsets": [self.db_subset_schema]},
291
+ )
292
+
293
+ self.ft_dataset_schema = self.__merge_dict(
294
+ self.DATASET_ASCENDABLE_SCHEMA,
295
+ self.SUBSET_ASCENDABLE_SCHEMA,
296
+ self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
297
+ {"subsets": [self.ft_subset_schema]},
298
+ )
299
+
300
+ self.cn_dataset_schema = self.__merge_dict(
301
+ self.DATASET_ASCENDABLE_SCHEMA,
302
+ self.SUBSET_ASCENDABLE_SCHEMA,
303
+ self.CN_SUBSET_ASCENDABLE_SCHEMA,
304
+ self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
305
+ {"subsets": [self.cn_subset_schema]},
306
+ )
307
+
308
+ if support_dreambooth and support_finetuning:
309
+
310
+ def validate_flex_dataset(dataset_config: dict):
311
+ subsets_config = dataset_config.get("subsets", [])
312
+
313
+ if support_controlnet and all(["conditioning_data_dir" in subset for subset in subsets_config]):
314
+ return Schema(self.cn_dataset_schema)(dataset_config)
315
+ # check dataset meets FT style
316
+ # NOTE: all FT subsets should have "metadata_file"
317
+ elif all(["metadata_file" in subset for subset in subsets_config]):
318
+ return Schema(self.ft_dataset_schema)(dataset_config)
319
+ # check dataset meets DB style
320
+ # NOTE: all DB subsets should have no "metadata_file"
321
+ elif all(["metadata_file" not in subset for subset in subsets_config]):
322
+ return Schema(self.db_dataset_schema)(dataset_config)
323
+ else:
324
+ raise voluptuous.Invalid(
325
+ "DreamBooth subset and fine tuning subset cannot be mixed in the same dataset. Please split them into separate datasets. / DreamBoothのサブセットとfine tuninのサブセットを同一のデータセットに混在させることはできません。別々のデータセットに分割してください。"
326
+ )
327
+
328
+ self.dataset_schema = validate_flex_dataset
329
+ elif support_dreambooth:
330
+ if support_controlnet:
331
+ self.dataset_schema = self.cn_dataset_schema
332
+ else:
333
+ self.dataset_schema = self.db_dataset_schema
334
+ elif support_finetuning:
335
+ self.dataset_schema = self.ft_dataset_schema
336
+ elif support_controlnet:
337
+ self.dataset_schema = self.cn_dataset_schema
338
+
339
+ self.general_schema = self.__merge_dict(
340
+ self.DATASET_ASCENDABLE_SCHEMA,
341
+ self.SUBSET_ASCENDABLE_SCHEMA,
342
+ self.DB_SUBSET_ASCENDABLE_SCHEMA if support_dreambooth else {},
343
+ self.CN_SUBSET_ASCENDABLE_SCHEMA if support_controlnet else {},
344
+ self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
345
+ )
346
+
347
+ self.user_config_validator = Schema(
348
+ {
349
+ "general": self.general_schema,
350
+ "datasets": [self.dataset_schema],
351
+ }
352
+ )
353
+
354
+ self.argparse_schema = self.__merge_dict(
355
+ self.general_schema,
356
+ self.ARGPARSE_SPECIFIC_SCHEMA,
357
+ {optname: Any(None, self.general_schema[optname]) for optname in self.ARGPARSE_NULLABLE_OPTNAMES},
358
+ {a_name: self.general_schema[c_name] for a_name, c_name in self.ARGPARSE_OPTNAME_TO_CONFIG_OPTNAME.items()},
359
+ )
360
+
361
+ self.argparse_config_validator = Schema(Object(self.argparse_schema), extra=voluptuous.ALLOW_EXTRA)
362
+
363
+ def sanitize_user_config(self, user_config: dict) -> dict:
364
+ try:
365
+ return self.user_config_validator(user_config)
366
+ except MultipleInvalid:
367
+ # TODO: エラー発生時のメッセージをわかりやすくする
368
+ logger.error("Invalid user config / ユーザ設定の形式が正しくないようです")
369
+ raise
370
+
371
+ # NOTE: In nature, argument parser result is not needed to be sanitize
372
+ # However this will help us to detect program bug
373
+ def sanitize_argparse_namespace(self, argparse_namespace: argparse.Namespace) -> argparse.Namespace:
374
+ try:
375
+ return self.argparse_config_validator(argparse_namespace)
376
+ except MultipleInvalid:
377
+ # XXX: this should be a bug
378
+ logger.error(
379
+ "Invalid cmdline parsed arguments. This should be a bug. / コマンドラインのパース結果が正しくないようです。プログラムのバグの可能性が高いです。"
380
+ )
381
+ raise
382
+
383
+ # NOTE: value would be overwritten by latter dict if there is already the same key
384
+ @staticmethod
385
+ def __merge_dict(*dict_list: dict) -> dict:
386
+ merged = {}
387
+ for schema in dict_list:
388
+ # merged |= schema
389
+ for k, v in schema.items():
390
+ merged[k] = v
391
+ return merged
392
+
393
+
394
+ class BlueprintGenerator:
395
+ BLUEPRINT_PARAM_NAME_TO_CONFIG_OPTNAME = {}
396
+
397
+ def __init__(self, sanitizer: ConfigSanitizer):
398
+ self.sanitizer = sanitizer
399
+
400
+ # runtime_params is for parameters which is only configurable on runtime, such as tokenizer
401
+ def generate(self, user_config: dict, argparse_namespace: argparse.Namespace, **runtime_params) -> Blueprint:
402
+ sanitized_user_config = self.sanitizer.sanitize_user_config(user_config)
403
+ sanitized_argparse_namespace = self.sanitizer.sanitize_argparse_namespace(argparse_namespace)
404
+
405
+ # convert argparse namespace to dict like config
406
+ # NOTE: it is ok to have extra entries in dict
407
+ optname_map = self.sanitizer.ARGPARSE_OPTNAME_TO_CONFIG_OPTNAME
408
+ argparse_config = {
409
+ optname_map.get(optname, optname): value for optname, value in vars(sanitized_argparse_namespace).items()
410
+ }
411
+
412
+ general_config = sanitized_user_config.get("general", {})
413
+
414
+ dataset_blueprints = []
415
+ for dataset_config in sanitized_user_config.get("datasets", []):
416
+ # NOTE: if subsets have no "metadata_file", these are DreamBooth datasets/subsets
417
+ subsets = dataset_config.get("subsets", [])
418
+ is_dreambooth = all(["metadata_file" not in subset for subset in subsets])
419
+ is_controlnet = all(["conditioning_data_dir" in subset for subset in subsets])
420
+ if is_controlnet:
421
+ subset_params_klass = ControlNetSubsetParams
422
+ dataset_params_klass = ControlNetDatasetParams
423
+ elif is_dreambooth:
424
+ subset_params_klass = DreamBoothSubsetParams
425
+ dataset_params_klass = DreamBoothDatasetParams
426
+ else:
427
+ subset_params_klass = FineTuningSubsetParams
428
+ dataset_params_klass = FineTuningDatasetParams
429
+
430
+ subset_blueprints = []
431
+ for subset_config in subsets:
432
+ params = self.generate_params_by_fallbacks(
433
+ subset_params_klass, [subset_config, dataset_config, general_config, argparse_config, runtime_params]
434
+ )
435
+ subset_blueprints.append(SubsetBlueprint(params))
436
+
437
+ params = self.generate_params_by_fallbacks(
438
+ dataset_params_klass, [dataset_config, general_config, argparse_config, runtime_params]
439
+ )
440
+ dataset_blueprints.append(DatasetBlueprint(is_dreambooth, is_controlnet, params, subset_blueprints))
441
+
442
+ dataset_group_blueprint = DatasetGroupBlueprint(dataset_blueprints)
443
+
444
+ return Blueprint(dataset_group_blueprint)
445
+
446
+ @staticmethod
447
+ def generate_params_by_fallbacks(param_klass, fallbacks: Sequence[dict]):
448
+ name_map = BlueprintGenerator.BLUEPRINT_PARAM_NAME_TO_CONFIG_OPTNAME
449
+ search_value = BlueprintGenerator.search_value
450
+ default_params = asdict(param_klass())
451
+ param_names = default_params.keys()
452
+
453
+ params = {name: search_value(name_map.get(name, name), fallbacks, default_params.get(name)) for name in param_names}
454
+
455
+ return param_klass(**params)
456
+
457
+ @staticmethod
458
+ def search_value(key: str, fallbacks: Sequence[dict], default_value=None):
459
+ for cand in fallbacks:
460
+ value = cand.get(key)
461
+ if value is not None:
462
+ return value
463
+
464
+ return default_value
465
+
466
+
467
+ def generate_dataset_group_by_blueprint(dataset_group_blueprint: DatasetGroupBlueprint):
468
+ datasets: List[Union[DreamBoothDataset, FineTuningDataset, ControlNetDataset]] = []
469
+
470
+ for dataset_blueprint in dataset_group_blueprint.datasets:
471
+ if dataset_blueprint.is_controlnet:
472
+ subset_klass = ControlNetSubset
473
+ dataset_klass = ControlNetDataset
474
+ elif dataset_blueprint.is_dreambooth:
475
+ subset_klass = DreamBoothSubset
476
+ dataset_klass = DreamBoothDataset
477
+ else:
478
+ subset_klass = FineTuningSubset
479
+ dataset_klass = FineTuningDataset
480
+
481
+ subsets = [subset_klass(**asdict(subset_blueprint.params)) for subset_blueprint in dataset_blueprint.subsets]
482
+ dataset = dataset_klass(subsets=subsets, **asdict(dataset_blueprint.params))
483
+ datasets.append(dataset)
484
+
485
+ # print info
486
+ info = ""
487
+ for i, dataset in enumerate(datasets):
488
+ is_dreambooth = isinstance(dataset, DreamBoothDataset)
489
+ is_controlnet = isinstance(dataset, ControlNetDataset)
490
+ info += dedent(
491
+ f"""\
492
+ [Dataset {i}]
493
+ batch_size: {dataset.batch_size}
494
+ resolution: {(dataset.width, dataset.height)}
495
+ enable_bucket: {dataset.enable_bucket}
496
+ network_multiplier: {dataset.network_multiplier}
497
+ """
498
+ )
499
+
500
+ if dataset.enable_bucket:
501
+ info += indent(
502
+ dedent(
503
+ f"""\
504
+ min_bucket_reso: {dataset.min_bucket_reso}
505
+ max_bucket_reso: {dataset.max_bucket_reso}
506
+ bucket_reso_steps: {dataset.bucket_reso_steps}
507
+ bucket_no_upscale: {dataset.bucket_no_upscale}
508
+ \n"""
509
+ ),
510
+ " ",
511
+ )
512
+ else:
513
+ info += "\n"
514
+
515
+ for j, subset in enumerate(dataset.subsets):
516
+ info += indent(
517
+ dedent(
518
+ f"""\
519
+ [Subset {j} of Dataset {i}]
520
+ image_dir: "{subset.image_dir}"
521
+ image_count: {subset.img_count}
522
+ num_repeats: {subset.num_repeats}
523
+ shuffle_caption: {subset.shuffle_caption}
524
+ keep_tokens: {subset.keep_tokens}
525
+ keep_tokens_separator: {subset.keep_tokens_separator}
526
+ secondary_separator: {subset.secondary_separator}
527
+ enable_wildcard: {subset.enable_wildcard}
528
+ caption_dropout_rate: {subset.caption_dropout_rate}
529
+ caption_dropout_every_n_epoches: {subset.caption_dropout_every_n_epochs}
530
+ caption_tag_dropout_rate: {subset.caption_tag_dropout_rate}
531
+ caption_prefix: {subset.caption_prefix}
532
+ caption_suffix: {subset.caption_suffix}
533
+ color_aug: {subset.color_aug}
534
+ flip_aug: {subset.flip_aug}
535
+ face_crop_aug_range: {subset.face_crop_aug_range}
536
+ random_crop: {subset.random_crop}
537
+ token_warmup_min: {subset.token_warmup_min},
538
+ token_warmup_step: {subset.token_warmup_step},
539
+ """
540
+ ),
541
+ " ",
542
+ )
543
+
544
+ if is_dreambooth:
545
+ info += indent(
546
+ dedent(
547
+ f"""\
548
+ is_reg: {subset.is_reg}
549
+ class_tokens: {subset.class_tokens}
550
+ caption_extension: {subset.caption_extension}
551
+ \n"""
552
+ ),
553
+ " ",
554
+ )
555
+ elif not is_controlnet:
556
+ info += indent(
557
+ dedent(
558
+ f"""\
559
+ metadata_file: {subset.metadata_file}
560
+ \n"""
561
+ ),
562
+ " ",
563
+ )
564
+
565
+ logger.info(f"{info}")
566
+
567
+ # make buckets first because it determines the length of dataset
568
+ # and set the same seed for all datasets
569
+ seed = random.randint(0, 2**31) # actual seed is seed + epoch_no
570
+ for i, dataset in enumerate(datasets):
571
+ logger.info(f"[Dataset {i}]")
572
+ dataset.make_buckets()
573
+ dataset.set_seed(seed)
574
+
575
+ return DatasetGroup(datasets)
576
+
577
+
578
+ def generate_dreambooth_subsets_config_by_subdirs(train_data_dir: Optional[str] = None, reg_data_dir: Optional[str] = None):
579
+ def extract_dreambooth_params(name: str) -> Tuple[int, str]:
580
+ tokens = name.split("_")
581
+ try:
582
+ n_repeats = int(tokens[0])
583
+ except ValueError as e:
584
+ logger.warning(f"ignore directory without repeats / 繰り返し回数のないディレクトリを無視します: {name}")
585
+ return 0, ""
586
+ caption_by_folder = "_".join(tokens[1:])
587
+ return n_repeats, caption_by_folder
588
+
589
+ def generate(base_dir: Optional[str], is_reg: bool):
590
+ if base_dir is None:
591
+ return []
592
+
593
+ base_dir: Path = Path(base_dir)
594
+ if not base_dir.is_dir():
595
+ return []
596
+
597
+ subsets_config = []
598
+ for subdir in base_dir.iterdir():
599
+ if not subdir.is_dir():
600
+ continue
601
+
602
+ num_repeats, class_tokens = extract_dreambooth_params(subdir.name)
603
+ if num_repeats < 1:
604
+ continue
605
+
606
+ subset_config = {"image_dir": str(subdir), "num_repeats": num_repeats, "is_reg": is_reg, "class_tokens": class_tokens}
607
+ subsets_config.append(subset_config)
608
+
609
+ return subsets_config
610
+
611
+ subsets_config = []
612
+ subsets_config += generate(train_data_dir, False)
613
+ subsets_config += generate(reg_data_dir, True)
614
+
615
+ return subsets_config
616
+
617
+
618
+ def generate_controlnet_subsets_config_by_subdirs(
619
+ train_data_dir: Optional[str] = None, conditioning_data_dir: Optional[str] = None, caption_extension: str = ".txt"
620
+ ):
621
+ def generate(base_dir: Optional[str]):
622
+ if base_dir is None:
623
+ return []
624
+
625
+ base_dir: Path = Path(base_dir)
626
+ if not base_dir.is_dir():
627
+ return []
628
+
629
+ subsets_config = []
630
+ subset_config = {
631
+ "image_dir": train_data_dir,
632
+ "conditioning_data_dir": conditioning_data_dir,
633
+ "caption_extension": caption_extension,
634
+ "num_repeats": 1,
635
+ }
636
+ subsets_config.append(subset_config)
637
+
638
+ return subsets_config
639
+
640
+ subsets_config = []
641
+ subsets_config += generate(train_data_dir)
642
+
643
+ return subsets_config
644
+
645
+
646
+ def load_user_config(file: str) -> dict:
647
+ file: Path = Path(file)
648
+ if not file.is_file():
649
+ raise ValueError(f"file not found / ファイルが見つかりません: {file}")
650
+
651
+ if file.name.lower().endswith(".json"):
652
+ try:
653
+ with open(file, "r") as f:
654
+ config = json.load(f)
655
+ except Exception:
656
+ logger.error(
657
+ f"Error on parsing JSON config file. Please check the format. / JSON 形式の設定ファイルの読み込みに失敗しました。文法が正しいか確認してください。: {file}"
658
+ )
659
+ raise
660
+ elif file.name.lower().endswith(".toml"):
661
+ try:
662
+ config = toml.load(file)
663
+ except Exception:
664
+ logger.error(
665
+ f"Error on parsing TOML config file. Please check the format. / TOML 形式の設定ファイルの読み込みに失敗しました。文法が正しいか確認してください。: {file}"
666
+ )
667
+ raise
668
+ else:
669
+ raise ValueError(f"not supported config file format / 対応していない設定ファイルの形式です: {file}")
670
+
671
+ return config
672
+
673
+
674
+ # for config test
675
+ if __name__ == "__main__":
676
+ parser = argparse.ArgumentParser()
677
+ parser.add_argument("--support_dreambooth", action="store_true")
678
+ parser.add_argument("--support_finetuning", action="store_true")
679
+ parser.add_argument("--support_controlnet", action="store_true")
680
+ parser.add_argument("--support_dropout", action="store_true")
681
+ parser.add_argument("dataset_config")
682
+ config_args, remain = parser.parse_known_args()
683
+
684
+ parser = argparse.ArgumentParser()
685
+ train_util.add_dataset_arguments(
686
+ parser, config_args.support_dreambooth, config_args.support_finetuning, config_args.support_dropout
687
+ )
688
+ train_util.add_training_arguments(parser, config_args.support_dreambooth)
689
+ argparse_namespace = parser.parse_args(remain)
690
+ train_util.prepare_dataset_args(argparse_namespace, config_args.support_finetuning)
691
+
692
+ logger.info("[argparse_namespace]")
693
+ logger.info(f"{vars(argparse_namespace)}")
694
+
695
+ user_config = load_user_config(config_args.dataset_config)
696
+
697
+ logger.info("")
698
+ logger.info("[user_config]")
699
+ logger.info(f"{user_config}")
700
+
701
+ sanitizer = ConfigSanitizer(
702
+ config_args.support_dreambooth, config_args.support_finetuning, config_args.support_controlnet, config_args.support_dropout
703
+ )
704
+ sanitized_user_config = sanitizer.sanitize_user_config(user_config)
705
+
706
+ logger.info("")
707
+ logger.info("[sanitized_user_config]")
708
+ logger.info(f"{sanitized_user_config}")
709
+
710
+ blueprint = BlueprintGenerator(sanitizer).generate(user_config, argparse_namespace)
711
+
712
+ logger.info("")
713
+ logger.info("[blueprint]")
714
+ logger.info(f"{blueprint}")