import os import threading #使用的库 from pathlib import Path import subprocess import pandas as pd import shutil import os import time import re import gc import requests import zipfile import threading import time import socket from concurrent.futures import ProcessPoolExecutor import subprocess import os import subprocess # 定义Bash脚本内容,安装目录已更改为 /home/xlab-app-center/ bash_script = """#!/bin/bash # 使用方法:拖入到workspace中,然后终端运行bash sd_tx.sh # 出现7860webui端口运行后,二选一:1.运行```pip install pyngrok && ngrok http 7860 --authtoken=你的ngrok_token``` 2.SSH转发隧道 # 检查目录是否存在 if [ -d "/home/xlab-app-center/tmp" ]; then # 如果目录存在,执行 B echo "检测到文件存在,跳过安装直接启动" rm -rf /home/xlab-app-center/tmp/stable-diffusion-webui/extensions/sd-webui-infinite-image-browsing cd /home/xlab-app-center/tmp/stable-diffusion-webui && HF_ENDPOINT=https://hf-mirror.com python3 launch.py --api --port=7860 --xformers --ckpt-dir=/home/xlab-app-center/sdmodels --lora-dir=/home/xlab-app-center/lora --vae-dir=/home/xlab-app-center/vae else # 如果目录不存在,执行 A echo "开始安装 SD WebUI" # apt update && apt install -y aria2 unzip aria2c -x 16 -s 16 "https://hf-mirror.com/datasets/nyan102/modelscope_code/resolve/main/ssh7865.py" -o ssh7865.py -d /home/xlab-app-center/ aria2c -x 16 -s 16 "https://hf-mirror.com/datasets/nyan102/modelscope_code/resolve/main/aria2.sh" -o aria2.sh -d /home/xlab-app-center/ echo 安装SD cd /home/xlab-app-center/ && aria2c -x 16 -s 16 -c -k 1M "https://www.modelscope.cn/models/ACCC1380/SD-WebUI-pack/resolve/master/sd-webui.zip" -o sd-webui.zip cd /home/xlab-app-center/ && unzip ./sd-webui.zip && rm ./sd-webui.zip echo 安装venv和模型 #cd /home/xlab-app-center/ && aria2c -x 16 -s 16 -c -k 1M "https://www.modelscope.cn/models/ACCC1380/SD-WebUI-pack/resolve/master/sdvenv.tar.safetensors" -o venv.tar aria2c -x 16 -s 16 -c -k 1M "https://www.modelscope.cn/models/ACCC1380/Comfyui_buckup_20241122_1049/resolve/master/NoobXL-EPS-v1.1.safetensors" -o NoobXL-v1.1.safetensors -d /home/xlab-app-center/sdmodels cd /home/xlab-app-center/ && rm venv.tar echo 创建模型目录 mkdir -p /home/xlab-app-center/sdmodels mkdir -p /home/xlab-app-center/lora mkdir -p /home/xlab-app-center/vae echo 安装必要文件 mkdir -p /home/xlab-app-center/tmp/stable-diffusion-webui/models/VAE-approx cd /home/xlab-app-center/tmp/stable-diffusion-webui/models/VAE-approx && wget -O vaeapprox-sdxl.pt "https://www.modelscope.cn/models/ACCC1380/Noobxl/resolve/master/vaeapprox-sdxl.pt" --no-check-certificate cd /home/xlab-app-center/tmp/stable-diffusion-webui && wget -O rep_github.py "https://hf-mirror.com/datasets/ACCA225/useful_code/raw/main/github%E5%BC%BA%E5%88%B6%E6%8D%A2%E6%BA%90.py" --no-check-certificate cd /home/xlab-app-center/tmp/stable-diffusion-webui && python rep_github.py echo 开始启动sd #cd /home/xlab-app-center/venv/bin && rm python* #cd /home/xlab-app-center/ && python -m venv venv # 目的是移除不匹配的python版本 echo 安装成功!再次运行bash sd_tx.sh即可启动SD # cd /home/xlab-app-center/tmp/stable-diffusion-webui && HF_ENDPOINT=https://hf-mirror.com /home/xlab-app-center/venv/bin/python launch.py --api --port=7860 --xformers --ckpt-dir=/home/xlab-app-center/sdmodels --lora-dir=/home/xlab-app-center/lora --vae-dir=/home/xlab-app-center/vae & bash /home/xlab-app-center/aria2.sh & ssh -R 80:127.0.0.1:7860 nokey@localhost.run -o StrictHostKeyChecking=no fi """ # 定义脚本文件路径 script_path = 'sd_tx.sh' # 将Bash脚本内容写入文件 with open(script_path, 'w') as file: file.write(bash_script) # 赋予脚本执行权限 os.chmod(script_path, 0o755) # 定义一个函数来运行脚本 def run_script(script): try: # 使用subprocess运行脚本 subprocess.run(['bash', script], check=True) print(f"{script} 执行成功") except subprocess.CalledProcessError as e: print(f"运行 {script} 时出错: {e}") # import wandb def notbook(): os.system("pip install pyngrok") os.system("pip install jupyterlab") # 构建命令字符串 ngrok_command = f"ngrok http 8889 --authtoken=2mWJvpdOJDDF7CWl5tas7qyim0X_6CcZWzgN3TWBmx2QbTGrk" jupyter_command = "jupyter-lab --no-browser --ip=0.0.0.0 --allow-root --notebook-dir=/ --port=8889 --LabApp.token= --LabApp.allow_origin=* --LabApp.base_url=" # 启动 ngrok 进程 ngrok_process = subprocess.Popen(ngrok_command, shell=True) # 启动 Jupyter 进程 jupyter_process = subprocess.Popen(jupyter_command, shell=True) notbook() # 运行脚本两次 for i in range(2): print(f"开始运行第 {i+1} 次脚本") run_script(script_path) print(f"第 {i+1} 次脚本运行结束\n") time.sleep(99999999) #os.system(f"ngrok tunnel --authtoken={ngrok_token} --region=ap http://localhost:8888 & python jupyter-lab --ServerApp.shutdown_no_activity_timeout=1800 --TerminalManager.cull_inactive_timeout=1800 --TerminalManager.cull_interval=300 --MappingKernelManager.cull_idle_timeout=1800 --MappingKernelManager.cull_interval=300 --MappingKernelManager.cull_connected=True --MappingKernelManager.cull_busy=True --no-browser --ip=0.0.0.0 --allow-root --notebook-dir=/ --port=8888 --LabApp.token= --LabApp.allow_origin=* --LabApp.base_url=") os.system("pip install nvidia-ml-py3") os.chdir(f"/home/xlab-app-center") os.system(f"git clone https://openi.pcl.ac.cn/2575044704/stable-diffusion-webui22 /home/xlab-app-center/stable-diffusion-webui") os.system(f"git clone https://openi.pcl.ac.cn/2575044704/stable-diffusion-webui22 /home/xlab-app-center/stable-diffusion-webui") os.system(f"git clone https://openi.pcl.ac.cn/2575044704/stable-diffusion-webui22 /home/xlab-app-center/stable-diffusion-webui") os.system(f"git clone https://openi.pcl.ac.cn/2575044704/stable-diffusion-webui22 /home/xlab-app-center/stable-diffusion-webui") os.system(f"git clone https://openi.pcl.ac.cn/2575044704/stable-diffusion-webui22 /home/xlab-app-center/stable-diffusion-webui") os.system(f"cp /home/xlab-app-center/styles.csv /home/xlab-app-center/stable-diffusion-webui/styles.csv") os.chdir(f"/home/xlab-app-center/stable-diffusion-webui") #os.system("wget https://openi.pcl.ac.cn/2575044704/stable-diffusion-webui2/raw/branch/master/webui.py -O webui.py") #os.system(f"git lfs install") #os.system(f"git reset --hard") #os.system("wget https://openi.pcl.ac.cn/2575044704/stable-diffusion-webui2/raw/branch/master/webui.py -O webui.py") os.chdir(f"/home/xlab-app-center/stable-diffusion-webui/extensions") os.system(f"rm -rf ./batchlinks-webui") plugins = [ "https://openi.pcl.ac.cn/2575044704/stable-diffusion-webui-localization-zh_CN2", "https://gitcode.net/ranting8323/multidiffusion-upscaler-for-automatic1111", "https://gitcode.net/ranting8323/adetailer", #"https://gitcode.net/ranting8323/sd-webui-prompt-all-in-one", "https://gitcode.net/ranting8323/sd-webui-inpaint-anything", "https://gitcode.net/ranting8323/a1111-sd-webui-tagcomplete", "https://gitcode.net/nightaway/sd-webui-infinite-image-browsing", "https://openi.pcl.ac.cn/2575044704/sd-extension-system-info", "https://openi.pcl.ac.cn/2575044704/batchlinks-webui" ] for plugin in plugins: os.system(f"git clone {plugin}") os.makedirs('/home/xlab-app-center/stable-diffusion-webui/models/adetailer', exist_ok=True) os.chdir(f"/home/xlab-app-center/stable-diffusion-webui/models/adetailer") os.system(f"aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://hf-mirror.com/Bingsu/adetailer/resolve/main/hand_yolov8s.pt -d /home/xlab-app-center/stable-diffusion-webui/models/adetailer -o hand_yolov8s.pt") os.system(f"aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://hf-mirror.com/Bingsu/adetailer/resolve/main/hand_yolov8n.pt -d /home/xlab-app-center/stable-diffusion-webui/models/adetailer -o hand_yolov8n.pt") os.system(f"aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://hf-mirror.com/datasets/ACCC1380/private-model/resolve/main/sex/noobaiXLNAIXL_earlyAccessVersion.safetensors -d /home/xlab-app-center/stable-diffusion-webui/models/Stable-diffusion -o noobaiXLNAIXL_earlyAccessVersion.safetensors") os.system(f"aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://hf-mirror.com/datasets/ACCC1380/private-model/resolve/main/ba.safetensors -d /home/xlab-app-center/stable-diffusion-webui/models/Lora -o ba.safetensors") os.system(f"aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://hf-mirror.com/datasets/ACCC1380/private-model/resolve/main/racaco2.safetensors -d /home/xlab-app-center/stable-diffusion-webui/models/Lora -o racaco2.safetensors") os.system(f"aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://hf-mirror.com/coinz/Add-detail/resolve/main/add_detail.safetensors -d /home/xlab-app-center/stable-diffusion-webui/models/Lora -o add_detail.safetensors") #os.system(f"aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://hf-mirror.com/datasets/VASVASVAS/vae/resolve/main/pastel-waifu-diffusion.vae.pt -d /home/xlab-app-center/stable-diffusion-webui/models/VAE -o pastel-waifu-diffusion.vae.pt") # os.system(f"aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://download.openxlab.org.cn/models/camenduru/sdxl-refiner-1.0/weight//sd_xl_refiner_1.0.safetensors -d /home/xlab-app-center/stable-diffusion-webui/models/Stable-diffusion -o sd_xl_refiner_1.0.safetensors") # os.system(f"aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://download.openxlab.org.cn/models/camenduru/cyber-realistic/weight//cyberrealistic_v32.safetensors -d /home/xlab-app-center/stable-diffusion-webui/models/Stable-diffusion -o cyberrealistic_v32.safetensors") os.chdir(f"/home/xlab-app-center/stable-diffusion-webui") print('webui launching...') package_envs = [ {"env": "STABLE_DIFFUSION_REPO", "url": os.environ.get('STABLE_DIFFUSION_REPO', "https://gitcode.net/overbill1683/stablediffusion")}, {"env": "STABLE_DIFFUSION_XL_REPO", "url": os.environ.get('STABLE_DIFFUSION_XL_REPO', "https://gitcode.net/overbill1683/generative-models")}, {"env": "K_DIFFUSION_REPO", "url": os.environ.get('K_DIFFUSION_REPO', "https://gitcode.net/overbill1683/k-diffusion")}, {"env": "CODEFORMER_REPO", "url": os.environ.get('CODEFORMER_REPO', "https://gitcode.net/overbill1683/CodeFormer")}, {"env": "BLIP_REPO", "url": os.environ.get('BLIP_REPO', "https://gitcode.net/overbill1683/BLIP")}, ] os.environ["PIP_INDEX_URL"] = "https://mirrors.aliyun.com/pypi/simple/" for i in package_envs: os.environ[i["env"]] = i["url"] import os import time import wandb import os import time import wandb # WandB登录 os.system('wandb login 5c00964de1bb95ec1ab24869d4c523c59e0fb8e3') # 初始化WandB项目 wandb.init(project="gpu-temperature-monitor") import os import threading import wandb import time import time import nvidia_smi import wandb def remove_restart(): os.chdir("/home/xlab-app-center/stable-diffusion-webui/html") os.system("rm ./footer.html && wget -O footer.html https://hf-mirror.com/datasets/ACCA225/openxlab/resolve/main/footer.html") os.chdir("/home/xlab-app-center/stable-diffusion-webui/modules") os.system("rm ./ui_settings.py && wget -O ui_settings.py https://hf-mirror.com/datasets/ACCA225/openxlab/resolve/main/ui_settings.py ") remove_restart() show_shell_info = False def run(command, cwd=None, desc=None, errdesc=None, custom_env=None,try_error:bool=True) -> str: global show_shell_info if desc is not None: print(desc) run_kwargs = { "args": command, "shell": True, "cwd": cwd, "env": os.environ if custom_env is None else custom_env, "encoding": 'utf8', "errors": 'ignore', } if not show_shell_info: run_kwargs["stdout"] = run_kwargs["stderr"] = subprocess.PIPE result = subprocess.run(**run_kwargs) if result.returncode != 0: error_bits = [ f"{errdesc or 'Error running command'}.", f"Command: {command}", f"Error code: {result.returncode}", ] if result.stdout: error_bits.append(f"stdout: {result.stdout}") if result.stderr: error_bits.append(f"stderr: {result.stderr}") if try_error: print((RuntimeError("\n".join(error_bits)))) else: raise RuntimeError("\n".join(error_bits)) if show_shell_info: print((result.stdout or "")) return (result.stdout or "") def mkdirs(path, exist_ok=True): if path and not Path(path).exists(): os.makedirs(path,exist_ok=exist_ok) proxy_path={ '/sd2/':'http://127.0.0.1:7862/', '/sd3/':'http://127.0.0.1:7863/' } # 增加一个comfyui的代理 server_port=7860 # webui 默认端口 _server_port = locals().get('server_port') or globals().get('server_port') or 7860 _proxy_path = locals().get('proxy_path') or globals().get('proxy_path') or {} # nginx 反向代理配置文件 def echoToFile(content:str,path:str): if path.find('/') >= 0: _path = '/'.join(path.split('/')[:-1]) run(f'''mkdir -p {_path}''') with open(path,'w') as sh: sh.write(content) # 检查网络 def check_service(host, port): try: socket.create_connection((host, port), timeout=5) return True except socket.error: return False def localProxy(): os.system('sudo apt install nginx -y') _proxy_path['/'] = f'http://127.0.0.1:{_server_port+1}/' _proxy_path['/1/'] = f'http://127.0.0.1:{_server_port+2}/' def getProxyLocation(subPath:str, localServer:str): return ''' location '''+ subPath +''' { proxy_pass '''+ localServer +'''; proxy_set_header Host $host; proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header REMOTE-HOST $remote_addr; proxy_set_header Upgrade $http_upgrade; proxy_set_header Connection upgrade; proxy_http_version 1.1; proxy_connect_timeout 10m; proxy_read_timeout 10m; } ''' conf = ''' server { listen '''+str(_server_port)+'''; listen [::]:'''+str(_server_port)+'''; server_name 127.0.0.1 localhost 0.0.0.0 ""; if ($request_method = OPTIONS) { return 200; } fastcgi_send_timeout 10m; fastcgi_read_timeout 10m; fastcgi_connect_timeout 10m; '''+ ''.join([getProxyLocation(key,_proxy_path[key]) for key in _proxy_path.keys()]) +''' } ''' echoToFile(conf,'/home/xlab-app-center/etc/nginx/conf.d/proxy_nginx.conf') if not check_service('localhost',_server_port): run(f'''nginx -c /home/xlab-app-center/etc/nginx/nginx.conf''') run(f'''nginx -s reload''') # 初始化 nvidia_smi nvidia_smi.nvmlInit() def monitor_gpu(): while True: try: print("你正在使用Nyan9的openxlab脚本,如果谁用了我的脚本请跟本人联系一下好吗:QQ2575044704") # 获取 GPU 温度 handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0) # 0 表示第一个 GPU gpu_temperature = nvidia_smi.nvmlDeviceGetTemperature(handle, nvidia_smi.NVML_TEMPERATURE_GPU) # 获取 GPU 使用率 utilization = nvidia_smi.nvmlDeviceGetUtilizationRates(handle) gpu_usage = utilization.gpu # 使用 WandB 记录 GPU 温度和使用率 wandb.log({"GPU 温度": gpu_temperature, "GPU 使用率": gpu_usage}) except Exception as e: print(f"Error: {e}") time.sleep(60) # 实例保活 import time def session_saver(): try: import cupy as cp except ImportError: print("cupy模块未安装,正在安装...") try: import pip pip.main(['install', 'cupy']) import cupy as cp except ImportError: print("无法安装模块,请确保已正确安装pip。") return while True: for _ in range(5): matrix_a = cp.random.rand(10000, 10000) matrix_b = cp.random.rand(10000, 10000) result = cp.dot(matrix_a, matrix_b) print("实例保活:", result) del matrix_a, matrix_b, result cp.cuda.Stream.null.synchronize() time.sleep(300) def start(): #try: # print('启动proxy') # threading.Thread(target = localProxy,daemon=True).start() #except Exception as e: # # 在这里处理异常的代码 # print(f"proxy An error occurred: {e}") #notbook() os.chdir("/home/xlab-app-center/stable-diffusion-webui/") try: while True: package_envs = [ {"env": "STABLE_DIFFUSION_REPO", "url": os.environ.get('STABLE_DIFFUSION_REPO', "https://gitcode.net/overbill1683/stablediffusion")}, {"env": "STABLE_DIFFUSION_XL_REPO", "url": os.environ.get('STABLE_DIFFUSION_XL_REPO', "https://gitcode.net/overbill1683/generative-models")}, {"env": "K_DIFFUSION_REPO", "url": os.environ.get('K_DIFFUSION_REPO', "https://gitcode.net/overbill1683/k-diffusion")}, {"env": "CODEFORMER_REPO", "url": os.environ.get('CODEFORMER_REPO', "https://gitcode.net/overbill1683/CodeFormer")}, {"env": "BLIP_REPO", "url": os.environ.get('BLIP_REPO', "https://gitcode.net/overbill1683/BLIP")}, ] os.environ["PIP_INDEX_URL"] = "https://mirrors.aliyun.com/pypi/simple/" for i in package_envs: os.environ[i["env"]] = i["url"] os.system(f"python launch.py --api --xformers --exit --enable-insecure-extension-access --gradio-queue --disable-safe-unpickle") #time.sleep(5) command = "python launch.py --api --api-auth=1:5 --xformers --ui-settings-file /home/xlab-app-center/config.json --ui-config-file /home/xlab-app-center/ui-config.json --gradio-queue --disable-safe-unpickle" #process = subprocess.Popen(command, shell=True) time.sleep(200) os.system(f"{command}") except Exception as e: # 在这里处理异常的代码 print(f"启动SD发生错误: {e}") # Create threads for each function wandb_thread = threading.Thread(target=monitor_gpu) keepliving_thread = threading.Thread(target=session_saver) start_thread = threading.Thread(target=start) # Start the threads wandb_thread.start() start_thread.start() keepliving_thread.start() # Wait for both threads to finish wandb_thread.join() start_thread.join() #keepliving_thread.join() time.sleep(3000000)