Add model card
Browse files
README.md
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- text-to-sql
|
8 |
+
- text2sql
|
9 |
+
- nlp2sql
|
10 |
+
- nlp-to-sql
|
11 |
+
- SQL
|
12 |
+
---
|
13 |
+
# Model Card for text2sql
|
14 |
+
|
15 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
16 |
+
|
17 |
+
LLM instruction finetuned for Text-to-SQL task.
|
18 |
+
|
19 |
+
## Model Details
|
20 |
+
|
21 |
+
### Model Description
|
22 |
+
|
23 |
+
<!-- Provide a longer summary of what this model is. -->
|
24 |
+
|
25 |
+
- **Developed by:** [dataeaze systems pvt ltd](https://www.dataeaze.io/)
|
26 |
+
- **Funded by :** [dataeaze systems pvt ltd](https://www.dataeaze.io/)
|
27 |
+
- **Shared by :** [dataeaze systems pvt ltd](https://www.dataeaze.io/)
|
28 |
+
- **Model type:** LlamaForCausalLM
|
29 |
+
- **Language(s) (NLP):** English
|
30 |
+
- **License:** [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en) Model is made available under non-commercial use for research purposes only. For commercial usage please connect at [email protected]
|
31 |
+
- **Finetuned from model :** [CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf)
|
32 |
+
|
33 |
+
|
34 |
+
## Uses
|
35 |
+
|
36 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
37 |
+
|
38 |
+
### Direct Use
|
39 |
+
|
40 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
41 |
+
Model can be used a tool to convert queries in expressed in natural language (English) to SQL statements
|
42 |
+
|
43 |
+
|
44 |
+
### Downstream Use
|
45 |
+
|
46 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
47 |
+
The model could be used as the initial stage in a data analytics / business intelligence application pipeline.
|
48 |
+
|
49 |
+
|
50 |
+
### Out-of-Scope Use
|
51 |
+
|
52 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
53 |
+
|
54 |
+
Model has been fine tuned on a specific task of converting English language statements to SQL queries.
|
55 |
+
Any use beyond this is not guaranteed to be accurate.
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
- **Bias:** Trained for English language only.
|
62 |
+
- **Risk:** Guardrails are reliant on the base models CodeLlama (Llama2). Finetuning could impact this behaviour.
|
63 |
+
- **Limitations:** Intended to be a small model optimised for inference. Does not provide SoTA results on accuracy.
|
64 |
+
|
65 |
+
|
66 |
+
## How to Get Started with the Model
|
67 |
+
|
68 |
+
Use the code below to get started with the model.
|
69 |
+
|
70 |
+
```
|
71 |
+
import torch
|
72 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
73 |
+
|
74 |
+
model = AutoModelForCausalLM.from_pretrained(
|
75 |
+
"dataeaze/dataeaze-text2sql-codellama_7b_instruct-clinton_text_to_sql_v1",
|
76 |
+
torch_dtype=torch.bfloat16,
|
77 |
+
device_map='auto'
|
78 |
+
)
|
79 |
+
|
80 |
+
tokenizer = AutoTokenizer.from_pretrained("dataeaze/dataeaze-text2sql-codellama_7b_instruct-clinton_text_to_sql_v1")
|
81 |
+
# print("model device :", model.device)
|
82 |
+
tokenizer.pad_token = tokenizer.eos_token
|
83 |
+
model.eval()
|
84 |
+
|
85 |
+
prompt = """ Below are sql tables schemas paired with instruction that describes a task.
|
86 |
+
Using valid SQLite, write a response that appropriately completes the request for the provided tables.
|
87 |
+
### Instruction: How many transactions were made by a customer in a specific month?
|
88 |
+
### Database: RewardsProgramDB61
|
89 |
+
### Input:
|
90 |
+
CREATE SCHEMA RewardsProgram;
|
91 |
+
|
92 |
+
CREATE TABLE Customer (
|
93 |
+
CustomerID INT NOT NULL AUTO_INCREMENT,
|
94 |
+
FirstName VARCHAR(50) NOT NULL,
|
95 |
+
LastName VARCHAR(50) NOT NULL,
|
96 |
+
Email VARCHAR(100) UNIQUE NOT NULL,
|
97 |
+
Phone VARCHAR(20) UNIQUE,
|
98 |
+
DateOfBirth DATE,
|
99 |
+
PRIMARY KEY (CustomerID)
|
100 |
+
);
|
101 |
+
|
102 |
+
CREATE TABLE Membership (
|
103 |
+
MembershipID INT NOT NULL AUTO_INCREMENT,
|
104 |
+
MembershipType VARCHAR(50) NOT NULL,
|
105 |
+
DiscountPercentage DECIMAL(5, 2) NOT NULL,
|
106 |
+
ValidFrom DATETIME,
|
107 |
+
ValidTo DATETIME,
|
108 |
+
CustomerID INT NOT NULL,
|
109 |
+
PRIMARY KEY (MembershipID),
|
110 |
+
FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID)
|
111 |
+
);
|
112 |
+
|
113 |
+
CREATE TABLE Transaction (
|
114 |
+
TransactionID INT NOT NULL AUTO_INCREMENT,
|
115 |
+
TransactionDate TIMESTAMP,
|
116 |
+
TotalAmount DECIMAL(10, 2) NOT NULL,
|
117 |
+
CustomerID INT NOT NULL,
|
118 |
+
PRIMARY KEY (TransactionID),
|
119 |
+
FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID)
|
120 |
+
);
|
121 |
+
|
122 |
+
CREATE TABLE TransactionDetail (
|
123 |
+
TransactionDetailID INT NOT NULL AUTO_INCREMENT,
|
124 |
+
TransactionID INT NOT NULL,
|
125 |
+
ProductID INT NOT NULL,
|
126 |
+
Quantity INT NOT NULL,
|
127 |
+
UnitPrice DECIMAL(10, 2) NOT NULL,
|
128 |
+
PRIMARY KEY (TransactionDetailID),
|
129 |
+
FOREIGN KEY (TransactionID) REFERENCES Transaction(TransactionID),
|
130 |
+
FOREIGN KEY (ProductID) REFERENCES Product(ProductID)
|
131 |
+
);
|
132 |
+
|
133 |
+
CREATE TABLE Product (
|
134 |
+
ProductID INT NOT NULL AUTO_INCREMENT,
|
135 |
+
ProductName VARCHAR(100) NOT NULL,
|
136 |
+
UnitPrice DECIMAL(10, 2) NOT NULL,
|
137 |
+
AvailableQuantity INT NOT NULL,
|
138 |
+
CreatedDate DATETIME,
|
139 |
+
PRIMARY KEY (ProductID)
|
140 |
+
);
|
141 |
+
|
142 |
+
ALTER TABLE Membership ADD CONSTRAINT FK_Membership_Customer FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID);
|
143 |
+
|
144 |
+
ALTER TABLE TransactionDetail ADD CONSTRAINT FK_TransactionDetail_Transaction FOREIGN KEY (TransactionID) REFERENCES Transaction(TransactionID);
|
145 |
+
|
146 |
+
ALTER TABLE TransactionDetail ADD CONSTRAINT FK_TransactionDetail_Product FOREIGN KEY (ProductID) REFERENCES Product(ProductID);"
|
147 |
+
"""
|
148 |
+
|
149 |
+
input_ids = tokenizer(prompt, padding=True, return_tensors='pt')
|
150 |
+
outputs = model.generate(
|
151 |
+
input_ids=input_ids['input_ids'].to(model.device),
|
152 |
+
attention_mask=input_ids['attention_mask'].to(model.device),
|
153 |
+
max_new_tokens=3072,
|
154 |
+
)
|
155 |
+
|
156 |
+
generated_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
157 |
+
print(generated_query)
|
158 |
+
|
159 |
+
|
160 |
+
```
|
161 |
+
|
162 |
+
|
163 |
+
## Evaluation
|
164 |
+
|
165 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
166 |
+
|
167 |
+
### Testing Data & Metrics
|
168 |
+
|
169 |
+
#### Testing Data
|
170 |
+
|
171 |
+
<!-- This should link to a Dataset Card if possible. -->
|
172 |
+
|
173 |
+
[SPIDER dataset Test Set](https://yale-lily.github.io/spider)
|
174 |
+
|
175 |
+
|
176 |
+
#### Metrics
|
177 |
+
|
178 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
179 |
+
|
180 |
+
SQL queries are matched against the correct answer, with two types of evaluation
|
181 |
+
* Execution with Values
|
182 |
+
* Exact Set Match without Values
|
183 |
+
|
184 |
+
### Results
|
185 |
+
|
186 |
+
```
|
187 |
+
model-index:
|
188 |
+
- name: dataeaze/dataeaze-text2sql-codellama_7b_instruct-dzsql
|
189 |
+
results:
|
190 |
+
- task:
|
191 |
+
type: text-to-sql
|
192 |
+
dataset:
|
193 |
+
name: SPIDER 1.0
|
194 |
+
type: text-to-sql
|
195 |
+
metrics:
|
196 |
+
- name: Execution with Values
|
197 |
+
type: Execution with Values
|
198 |
+
value: 64.3
|
199 |
+
- name: Exact Set Match without Values
|
200 |
+
type: Exact Set Match without Values
|
201 |
+
value: 29.6
|
202 |
+
source:
|
203 |
+
name: Spider 1.0 - Leaderboard
|
204 |
+
url: https://yale-lily.github.io/spider
|
205 |
+
```
|
206 |
+
|
207 |
+
|
208 |
+
## Model Card Authors
|
209 |
+
|
210 |
+
* Suyash Chougule
|
211 |
+
* Chittaranjan Rathod
|
212 |
+
* Sourabh Daptardar
|
213 |
+
|
214 |
+
## Model Card Contact
|
215 |
+
|
216 |
+
"dataeaze systems" <[email protected]>
|