--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:1128 - loss:CosineSimilarityLoss base_model: sentence-transformers/all-MiniLM-L6-v2 widget: - source_sentence: connective tissue cell sentences: - GM18507 - GM18526 - GM08714 - source_sentence: blood sentences: - AG04449 - T cell - GM12868 - source_sentence: mammary gland sentences: - MCF-7 - leukocyte - GM10847 - source_sentence: GM18526 sentences: - digestive system - CMK - KOPT-K1 - source_sentence: GM12873 sentences: - KOPT-K1 - pancreas - leukocyte datasets: - databio/mock-stsb pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine model-index: - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev type: sts-dev metrics: - type: pearson_cosine value: 0.7058652030883807 name: Pearson Cosine - type: spearman_cosine value: 0.69543787652822 name: Spearman Cosine --- # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the [mock-stsb](https://huggingface.co/datasets/databio/mock-stsb) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [mock-stsb](https://huggingface.co/datasets/databio/mock-stsb) ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'GM12873', 'leukocyte', 'pancreas', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7059 | | **spearman_cosine** | **0.6954** | ## Training Details ### Training Dataset #### mock-stsb * Dataset: [mock-stsb](https://huggingface.co/datasets/databio/mock-stsb) at [d5ba748](https://huggingface.co/datasets/databio/mock-stsb/tree/d5ba748c12ecb4eb2178b42c9735506a50de9f86) * Size: 1,128 training samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:---------------------------------------|:--------------------------------|:-------------------| | OVCAR3 | pancreas | 0.05 | | L1-S8 | respiratory system | 0.001 | | peripheral nervous system | 22Rv1 | 0.001 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Evaluation Dataset #### mock-stsb * Dataset: [mock-stsb](https://huggingface.co/datasets/databio/mock-stsb) at [d5ba748](https://huggingface.co/datasets/databio/mock-stsb/tree/d5ba748c12ecb4eb2178b42c9735506a50de9f86) * Size: 284 evaluation samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 284 samples: | | sentence1 | sentence2 | score | |:--------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:-----------------------------|:----------------------------|:------------------| | SJCRH30 | cancer cell | 0.9 | | CWRU1 | exocrine gland | 0.05 | | epithelial cell | Caki2 | 0.9 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 4 - `learning_rate`: 1e-05 - `num_train_epochs`: 50 - `warmup_ratio`: 0.1 - `load_best_model_at_end`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 4 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 1e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 50 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | |:-----:|:----:|:-------------:|:---------------:|:-----------------------:| | 1.0 | 282 | 0.2157 | 0.1413 | 0.4340 | | 2.0 | 564 | 0.1402 | 0.1207 | 0.6198 | | 3.0 | 846 | 0.1239 | 0.0973 | 0.6541 | | 4.0 | 1128 | 0.1102 | 0.0858 | 0.6820 | | 5.0 | 1410 | 0.1006 | 0.0867 | 0.6664 | | 6.0 | 1692 | 0.0882 | 0.0886 | 0.6547 | | 7.0 | 1974 | 0.076 | 0.0842 | 0.6660 | | 8.0 | 2256 | 0.0639 | 0.0883 | 0.6392 | | 9.0 | 2538 | 0.0538 | 0.0896 | 0.6300 | | 10.0 | 2820 | 0.046 | 0.0884 | 0.6424 | | 11.0 | 3102 | 0.0427 | 0.0858 | 0.6600 | | 12.0 | 3384 | 0.0363 | 0.0878 | 0.6454 | | 13.0 | 3666 | 0.0331 | 0.0838 | 0.6710 | | 14.0 | 3948 | 0.0309 | 0.0839 | 0.6534 | | 15.0 | 4230 | 0.0277 | 0.0841 | 0.6650 | | 16.0 | 4512 | 0.026 | 0.0843 | 0.6933 | | 17.0 | 4794 | 0.0238 | 0.0884 | 0.6557 | | 18.0 | 5076 | 0.0229 | 0.0868 | 0.6649 | | 19.0 | 5358 | 0.022 | 0.0867 | 0.6629 | | 20.0 | 5640 | 0.021 | 0.0809 | 0.6815 | | 21.0 | 5922 | 0.0196 | 0.0827 | 0.6844 | | 22.0 | 6204 | 0.0189 | 0.0857 | 0.6770 | | 23.0 | 6486 | 0.0186 | 0.0833 | 0.6868 | | 24.0 | 6768 | 0.0172 | 0.0889 | 0.6710 | | 25.0 | 7050 | 0.0171 | 0.0806 | 0.6954 | ### Framework Versions - Python: 3.11.5 - Sentence Transformers: 3.3.1 - Transformers: 4.47.0 - PyTorch: 2.5.1+cu124 - Accelerate: 1.2.0 - Datasets: 3.1.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```