darthrevenge commited on
Commit
65794a1
·
1 Parent(s): 463eece

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2071.92 +/- 28.06
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e800f1e99f68f645e4c4ebf70113d2507a98754f890431530b404463721368d
3
+ size 129281
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f220b42e940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f220b42e9d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f220b42ea60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f220b42eaf0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f220b42eb80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f220b42ec10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f220b42eca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f220b42ed30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f220b42edc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f220b42ee50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f220b42eee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f220b42ef70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f2211b36b00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 1406184,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678559963230780413,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACS7qz9+irM+A32fPpnnuz9bXsk/YVqaP3OqbD/wtZe/wEc6PvDrx77fhBk/Lwxfv7Xcbj/Xjns/4eT7vqvLLj+Y2A4/YJg4P1SLJT8jYQ498ke0v6K8a780Fm0/385Lv8kjer/gGB8/LCmUPnM0KT/Xx80+HUD2PjKlNT5M5KU/ZEgmPwCyhz8xp20+OJZLv+1ZC7+lVnU+4cFUP1kPVr7/0Te/huciPzOl5b7p+SG+i95mPQql3L2XsSU/eo1fPS8Xpz5c/J2/hFuIP68pWT7JI3q/4BgfPywplD5zNCk/lSuJP102AD8/uB4+maEtP0UxzT+TKY+/R+tCPzB7A7/LmH8963elPnXdlz7CMmo/J8O2P3qeIr7NcLy+zWJQPYQilT+ifHO81RVbPrquaL91sHy/fr6HP6iDQD5hGsO+ySN6v+AYHz8sKZQ+czQpP7az0D0VqMc+feWLPs3RkT/pd1q9tkxMPiKfuD7Sjce+tRa+vb5j077MAHk/nzmIvrZmsb+Cssc+6gdUv1dph74q5Tk+z1rnvWfHJT/jmge9k0W3P+0fwb5w6BY/oSGovMkjer/gGB8/LCmUPqGowb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABCVZk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAB3NhvQAAAACzyuW/AAAAAD01/T0AAAAA60zhPwAAAABjkP48AAAAABYG9T8AAAAA9AWaPAAAAADHyd6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnERQtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIO2Kz0AAAAAUyD/vwAAAAATbsW9AAAAAO0g8j8AAAAA9dtwPQAAAAD+g94/AAAAAMDWYT0AAAAAZV3gvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMUh2jUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIALfoA9AAAAADup5L8AAAAAgEHQPQAAAADOrOw/AAAAAEb0WT0AAAAAVbTiPwAAAACp/Ms8AAAAAKVm378AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfWwI3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAblUOvgAAAADpifW/AAAAAOna5D0AAAAAv/sAQAAAAADOhZi7AAAAAO5JAUAAAAAAgoqivQAAAAAev+m/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.29691199999999995,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJocUbiqABmMAWyUTegDjAF0lEdAqb+54hUzbnV9lChoBkdAmoGAeNkvsmgHTegDaAhHQKnBpmXgLql1fZQoaAZHQJ3JyO3lS0loB03oA2gIR0CpyDgWBSUDdX2UKGgGR0Caqz40uUUxaAdN6ANoCEdAqcmAAMlTnHV9lChoBkdAm8fYNI9TxWgHTegDaAhHQKnRgB8QZoB1fZQoaAZHQJo/oOUdJatoB03oA2gIR0Cp1HK4x1xLdX2UKGgGR0CZy2S2H+IeaAdN6ANoCEdAqdv1x0dRznV9lChoBkdAm3433YcvNGgHTegDaAhHQKndO1KoQ4F1fZQoaAZHQJsO7uLJjlRoB03oA2gIR0Cp43xc/t6YdX2UKGgGR0CZ/AS9ugpSaAdN6ANoCEdAqeVncer+53V9lChoBkdAm1zBfKISDmgHTegDaAhHQKns2dFOO811fZQoaAZHQJtcpOXVsk9oB03oA2gIR0Cp7rrPt2LYdX2UKGgGR0CcePay8jA0aAdN6ANoCEdAqffdme18cHV9lChoBkdAm23zEvTPSmgHTegDaAhHQKn6psP8Q7N1fZQoaAZHQJtJDidat9xoB03oA2gIR0CqA9DsMRYjdX2UKGgGR0CbIkVY6nzhaAdN6ANoCEdAqgU5UR3/xXV9lChoBkdAnJHUhV2ic2gHTegDaAhHQKoMYOFQEZB1fZQoaAZHQJvCo4gieNFoB03oA2gIR0CqDvm9QGfPdX2UKGgGR0CbajKiO/+LaAdN6ANoCEdAqhfU4m1IAnV9lChoBkdAmxSa3AmAsmgHTegDaAhHQKoZHf+jua51fZQoaAZHQJqs2A4GUwBoB03oA2gIR0CqH6fXPJJYdX2UKGgGR0CYtREXLvCuaAdN6ANoCEdAqiGc0UGmk3V9lChoBkdAlY0Y593KS2gHTegDaAhHQKooUEMb3oN1fZQoaAZHQJnlU+UyHmBoB03oA2gIR0CqKcj2SMcZdX2UKGgGR0CYK+paA4GVaAdN6ANoCEdAqjN33WWhRXV9lChoBkdAmIGeP3i71GgHTegDaAhHQKo1zr5ZbIN1fZQoaAZHQJtlRTcZccFoB03oA2gIR0CqPI6OHWSVdX2UKGgGR0Cc7x9U0elsaAdN6ANoCEdAqj3cQRPGhnV9lChoBkdAnEE+yu6mO2gHTegDaAhHQKpEdK7I1cd1fZQoaAZHQJz6jr/sE7poB03oA2gIR0CqRmk74i5edX2UKGgGR0CeGX5HmRvFaAdN6ANoCEdAqk9RakhzNnV9lChoBkdAnJSnB1s+FGgHTegDaAhHQKpSFof0Vah1fZQoaAZHQJ4tx2Rq46RoB03oA2gIR0CqXPpYT0xudX2UKGgGR0CdM+9jwx33aAdN6ANoCEdAql7TnaFmF3V9lChoBkdAnW/lr6+FlGgHTegDaAhHQKplcIl+mWN1fZQoaAZHQJ+pOSntOVRoB03oA2gIR0CqZr1UlzEKdX2UKGgGR0Cc/g+t8uzyaAdN6ANoCEdAqm8/HDJlrnV9lChoBkdAnevdtZV4o2gHTegDaAhHQKpyM5CF9KF1fZQoaAZHQJ6mMlu3trtoB03oA2gIR0CqeYAntv4udX2UKGgGR0CcORo6CDmKaAdN6ANoCEdAqnrJ93KSxXV9lChoBkdAnkx0yDZlF2gHTegDaAhHQKqBP6+nIhh1fZQoaAZHQJ2dZnUUfxNoB03oA2gIR0CqgzUZ3s5XdX2UKGgGR0CSGTBoVVPvaAdN6ANoCEdAqoqxpN9H+nV9lChoBkdAmFQINEw352gHTegDaAhHQKqMgVGCqZN1fZQoaAZHQJwmV9MK1G9oB03oA2gIR0CqlZjwYtQLdX2UKGgGR0CgRaqnWJ7+aAdN6ANoCEdAqper/bTMJXV9lChoBkdAoDMrY02tMmgHTegDaAhHQKqeZ4NZvDR1fZQoaAZHQJ/Y5w84gihoB03oA2gIR0Cqn7l5GBnSdX2UKGgGR0Cf6wYOUdJbaAdN6ANoCEdAqqbpBu4wy3V9lChoBkdAoGD7JwKjSGgHTegDaAhHQKqp17VJ+Uh1fZQoaAZHQKAhjTy8SPFoB03oA2gIR0CqtLVwYLssdX2UKGgGR0CgJRqMNtqIaAdN6ANoCEdAqrbp1FH8THV9lChoBkdAnh5q4MF2V2gHTegDaAhHQKq+ZKLbYbt1fZQoaAZHQJ8ryE7GNrFoB03oA2gIR0CqwFe4smOVdX2UKGgGR0CevvPD50r9aAdN6ANoCEdAqscm7voeP3V9lChoBkdAoAfNKf4AS2gHTegDaAhHQKrIg6reZXx1fZQoaAZHQJ8j7dVNpM9oB03oA2gIR0Cqz41II4VAdX2UKGgGR0CfgXs8xKxtaAdN6ANoCEdAqtJT9MsYmHV9lChoBkdAoClW+GoJiWgHTegDaAhHQKrbkVC5Vfh1fZQoaAZHQJ52oZQ53khoB03oA2gIR0Cq3PEVeruIdX2UKGgGR0CegTA8SwnqaAdN6ANoCEdAquNRQ53kgnV9lChoBkdAm39BISUTtmgHTegDaAhHQKrlPp/PPcB1fZQoaAZHQJ8SoXYUWVNoB03oA2gIR0Cq7FXyiEg4dX2UKGgGR0Cdk2yH2ys0aAdN6ANoCEdAqu3i8jAzpHV9lChoBkdAnRua5LAYYWgHTegDaAhHQKr3uVZcLSh1fZQoaAZHQJ45drCWNWFoB03oA2gIR0Cq+qhx5s0pdX2UKGgGR0CfXuVjqfOEaAdN6ANoCEdAqwR5cs189nV9lChoBkdAn+BI02tMf2gHTegDaAhHQKsFvQQ+UyJ1fZQoaAZHQJx33qD9OypoB03oA2gIR0CrDCKF7D2rdX2UKGgGR0CfLby8zyjIaAdN6ANoCEdAqw55pN9H+nV9lChoBkdAmfSawUxmCmgHTegDaAhHQKsYUroW56N1fZQoaAZHQJ4F4IldC3RoB03oA2gIR0CrGaq2KEWZdX2UKGgGR0Cd4V0nPVuraAdN6ANoCEdAqyAdadMCcXV9lChoBkdAnJT3SWqtHWgHTegDaAhHQKsiAvgWJrN1fZQoaAZHQJ5D6KP4mC1oB03oA2gIR0CrKN1AiV0LdX2UKGgGR0CfF7LOAy2yaAdN6ANoCEdAqypCgh8pkXV9lChoBkdAnvbFImPYF2gHTegDaAhHQKsymPGyX2N1fZQoaAZHQJ8u4L/jsD5oB03oA2gIR0CrNZCxu89PdX2UKGgGR0CdsghQ3xWlaAdN6ANoCEdAqzzwyGi5/nV9lChoBkdAmpTy9du50GgHTegDaAhHQKs+Nb48EFJ1fZQoaAZHQJ2nOgsbvPVoB03oA2gIR0CrRLRG2CumdX2UKGgGR0CeHrHwgDA8aAdN6ANoCEdAq0ao1WKdhHV9lChoBkdAnZA0bT+efGgHTegDaAhHQKtNzBhx5s11fZQoaAZHQJ1p4dxQzk9oB03oA2gIR0CrT+5aNdZ8dX2UKGgGR0Cc3P8Hv+fiaAdN6ANoCEdAq1xjJQtSRHV9lChoBkdAnJkHzpX6qWgHTegDaAhHQKtfEQ2dd3V1fZQoaAZHQJ3Lxnyup0hoB03oA2gIR0CrZgVAiV0LdX2UKGgGR0CcWHwblzU7aAdN6ANoCEdAq2dQOQQtjHV9lChoBkdAnGNGHtWuHWgHTegDaAhHQKtuuXgLqlh1fZQoaAZHQJ4rwvQF9rpoB03oA2gIR0CrcY0Wl/H6dX2UKGgGR0CdkaKOktVaaAdN6ANoCEdAq3p6dc0Lt3V9lChoBkdAnko2+fywwGgHTegDaAhHQKt7wqgAZKp1fZQoaAZHQJry/9S/CZZoB03oA2gIR0CrgkL7XQMQdX2UKGgGR0CcYY9ehPCVaAdN6ANoCEdAq4RMyvcJt3V9lChoBkdAnXyXYUWVNmgHTegDaAhHQKuK+v3ai9J1fZQoaAZHQJ09a1JDmbNoB03oA2gIR0CrjLEOiFj/dX2UKGgGR0CdFLeGfwqiaAdN6ANoCEdAq5agVCXyAnV9lChoBkdAnvKgY1pCbGgHTegDaAhHQKuYzP6be/J1fZQoaAZHQJ6DrvLHMlloB03oA2gIR0Crn69q+JxedX2UKGgGR0CeK6HjZL7GaAdN6ANoCEdAq6EAx8D0UXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 43943,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0edc64fda67c34c4af5ee8b0fa00bd26c64c80edb0ddea6288d0a7e23220c3f1
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5406b2d8c560bae30625340f6dd7de6d646bd55310e830cb74209972cfb20b8
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f220b42e940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f220b42e9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f220b42ea60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f220b42eaf0>", "_build": "<function ActorCriticPolicy._build at 0x7f220b42eb80>", "forward": "<function ActorCriticPolicy.forward at 0x7f220b42ec10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f220b42eca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f220b42ed30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f220b42edc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f220b42ee50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f220b42eee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f220b42ef70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2211b36b00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1406184, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678559963230780413, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACS7qz9+irM+A32fPpnnuz9bXsk/YVqaP3OqbD/wtZe/wEc6PvDrx77fhBk/Lwxfv7Xcbj/Xjns/4eT7vqvLLj+Y2A4/YJg4P1SLJT8jYQ498ke0v6K8a780Fm0/385Lv8kjer/gGB8/LCmUPnM0KT/Xx80+HUD2PjKlNT5M5KU/ZEgmPwCyhz8xp20+OJZLv+1ZC7+lVnU+4cFUP1kPVr7/0Te/huciPzOl5b7p+SG+i95mPQql3L2XsSU/eo1fPS8Xpz5c/J2/hFuIP68pWT7JI3q/4BgfPywplD5zNCk/lSuJP102AD8/uB4+maEtP0UxzT+TKY+/R+tCPzB7A7/LmH8963elPnXdlz7CMmo/J8O2P3qeIr7NcLy+zWJQPYQilT+ifHO81RVbPrquaL91sHy/fr6HP6iDQD5hGsO+ySN6v+AYHz8sKZQ+czQpP7az0D0VqMc+feWLPs3RkT/pd1q9tkxMPiKfuD7Sjce+tRa+vb5j077MAHk/nzmIvrZmsb+Cssc+6gdUv1dph74q5Tk+z1rnvWfHJT/jmge9k0W3P+0fwb5w6BY/oSGovMkjer/gGB8/LCmUPqGowb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABCVZk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAB3NhvQAAAACzyuW/AAAAAD01/T0AAAAA60zhPwAAAABjkP48AAAAABYG9T8AAAAA9AWaPAAAAADHyd6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnERQtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIO2Kz0AAAAAUyD/vwAAAAATbsW9AAAAAO0g8j8AAAAA9dtwPQAAAAD+g94/AAAAAMDWYT0AAAAAZV3gvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMUh2jUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIALfoA9AAAAADup5L8AAAAAgEHQPQAAAADOrOw/AAAAAEb0WT0AAAAAVbTiPwAAAACp/Ms8AAAAAKVm378AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfWwI3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAblUOvgAAAADpifW/AAAAAOna5D0AAAAAv/sAQAAAAADOhZi7AAAAAO5JAUAAAAAAgoqivQAAAAAev+m/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.29691199999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJocUbiqABmMAWyUTegDjAF0lEdAqb+54hUzbnV9lChoBkdAmoGAeNkvsmgHTegDaAhHQKnBpmXgLql1fZQoaAZHQJ3JyO3lS0loB03oA2gIR0CpyDgWBSUDdX2UKGgGR0Caqz40uUUxaAdN6ANoCEdAqcmAAMlTnHV9lChoBkdAm8fYNI9TxWgHTegDaAhHQKnRgB8QZoB1fZQoaAZHQJo/oOUdJatoB03oA2gIR0Cp1HK4x1xLdX2UKGgGR0CZy2S2H+IeaAdN6ANoCEdAqdv1x0dRznV9lChoBkdAm3433YcvNGgHTegDaAhHQKndO1KoQ4F1fZQoaAZHQJsO7uLJjlRoB03oA2gIR0Cp43xc/t6YdX2UKGgGR0CZ/AS9ugpSaAdN6ANoCEdAqeVncer+53V9lChoBkdAm1zBfKISDmgHTegDaAhHQKns2dFOO811fZQoaAZHQJtcpOXVsk9oB03oA2gIR0Cp7rrPt2LYdX2UKGgGR0CcePay8jA0aAdN6ANoCEdAqffdme18cHV9lChoBkdAm23zEvTPSmgHTegDaAhHQKn6psP8Q7N1fZQoaAZHQJtJDidat9xoB03oA2gIR0CqA9DsMRYjdX2UKGgGR0CbIkVY6nzhaAdN6ANoCEdAqgU5UR3/xXV9lChoBkdAnJHUhV2ic2gHTegDaAhHQKoMYOFQEZB1fZQoaAZHQJvCo4gieNFoB03oA2gIR0CqDvm9QGfPdX2UKGgGR0CbajKiO/+LaAdN6ANoCEdAqhfU4m1IAnV9lChoBkdAmxSa3AmAsmgHTegDaAhHQKoZHf+jua51fZQoaAZHQJqs2A4GUwBoB03oA2gIR0CqH6fXPJJYdX2UKGgGR0CYtREXLvCuaAdN6ANoCEdAqiGc0UGmk3V9lChoBkdAlY0Y593KS2gHTegDaAhHQKooUEMb3oN1fZQoaAZHQJnlU+UyHmBoB03oA2gIR0CqKcj2SMcZdX2UKGgGR0CYK+paA4GVaAdN6ANoCEdAqjN33WWhRXV9lChoBkdAmIGeP3i71GgHTegDaAhHQKo1zr5ZbIN1fZQoaAZHQJtlRTcZccFoB03oA2gIR0CqPI6OHWSVdX2UKGgGR0Cc7x9U0elsaAdN6ANoCEdAqj3cQRPGhnV9lChoBkdAnEE+yu6mO2gHTegDaAhHQKpEdK7I1cd1fZQoaAZHQJz6jr/sE7poB03oA2gIR0CqRmk74i5edX2UKGgGR0CeGX5HmRvFaAdN6ANoCEdAqk9RakhzNnV9lChoBkdAnJSnB1s+FGgHTegDaAhHQKpSFof0Vah1fZQoaAZHQJ4tx2Rq46RoB03oA2gIR0CqXPpYT0xudX2UKGgGR0CdM+9jwx33aAdN6ANoCEdAql7TnaFmF3V9lChoBkdAnW/lr6+FlGgHTegDaAhHQKplcIl+mWN1fZQoaAZHQJ+pOSntOVRoB03oA2gIR0CqZr1UlzEKdX2UKGgGR0Cc/g+t8uzyaAdN6ANoCEdAqm8/HDJlrnV9lChoBkdAnevdtZV4o2gHTegDaAhHQKpyM5CF9KF1fZQoaAZHQJ6mMlu3trtoB03oA2gIR0CqeYAntv4udX2UKGgGR0CcORo6CDmKaAdN6ANoCEdAqnrJ93KSxXV9lChoBkdAnkx0yDZlF2gHTegDaAhHQKqBP6+nIhh1fZQoaAZHQJ2dZnUUfxNoB03oA2gIR0CqgzUZ3s5XdX2UKGgGR0CSGTBoVVPvaAdN6ANoCEdAqoqxpN9H+nV9lChoBkdAmFQINEw352gHTegDaAhHQKqMgVGCqZN1fZQoaAZHQJwmV9MK1G9oB03oA2gIR0CqlZjwYtQLdX2UKGgGR0CgRaqnWJ7+aAdN6ANoCEdAqper/bTMJXV9lChoBkdAoDMrY02tMmgHTegDaAhHQKqeZ4NZvDR1fZQoaAZHQJ/Y5w84gihoB03oA2gIR0Cqn7l5GBnSdX2UKGgGR0Cf6wYOUdJbaAdN6ANoCEdAqqbpBu4wy3V9lChoBkdAoGD7JwKjSGgHTegDaAhHQKqp17VJ+Uh1fZQoaAZHQKAhjTy8SPFoB03oA2gIR0CqtLVwYLssdX2UKGgGR0CgJRqMNtqIaAdN6ANoCEdAqrbp1FH8THV9lChoBkdAnh5q4MF2V2gHTegDaAhHQKq+ZKLbYbt1fZQoaAZHQJ8ryE7GNrFoB03oA2gIR0CqwFe4smOVdX2UKGgGR0CevvPD50r9aAdN6ANoCEdAqscm7voeP3V9lChoBkdAoAfNKf4AS2gHTegDaAhHQKrIg6reZXx1fZQoaAZHQJ8j7dVNpM9oB03oA2gIR0Cqz41II4VAdX2UKGgGR0CfgXs8xKxtaAdN6ANoCEdAqtJT9MsYmHV9lChoBkdAoClW+GoJiWgHTegDaAhHQKrbkVC5Vfh1fZQoaAZHQJ52oZQ53khoB03oA2gIR0Cq3PEVeruIdX2UKGgGR0CegTA8SwnqaAdN6ANoCEdAquNRQ53kgnV9lChoBkdAm39BISUTtmgHTegDaAhHQKrlPp/PPcB1fZQoaAZHQJ8SoXYUWVNoB03oA2gIR0Cq7FXyiEg4dX2UKGgGR0Cdk2yH2ys0aAdN6ANoCEdAqu3i8jAzpHV9lChoBkdAnRua5LAYYWgHTegDaAhHQKr3uVZcLSh1fZQoaAZHQJ45drCWNWFoB03oA2gIR0Cq+qhx5s0pdX2UKGgGR0CfXuVjqfOEaAdN6ANoCEdAqwR5cs189nV9lChoBkdAn+BI02tMf2gHTegDaAhHQKsFvQQ+UyJ1fZQoaAZHQJx33qD9OypoB03oA2gIR0CrDCKF7D2rdX2UKGgGR0CfLby8zyjIaAdN6ANoCEdAqw55pN9H+nV9lChoBkdAmfSawUxmCmgHTegDaAhHQKsYUroW56N1fZQoaAZHQJ4F4IldC3RoB03oA2gIR0CrGaq2KEWZdX2UKGgGR0Cd4V0nPVuraAdN6ANoCEdAqyAdadMCcXV9lChoBkdAnJT3SWqtHWgHTegDaAhHQKsiAvgWJrN1fZQoaAZHQJ5D6KP4mC1oB03oA2gIR0CrKN1AiV0LdX2UKGgGR0CfF7LOAy2yaAdN6ANoCEdAqypCgh8pkXV9lChoBkdAnvbFImPYF2gHTegDaAhHQKsymPGyX2N1fZQoaAZHQJ8u4L/jsD5oB03oA2gIR0CrNZCxu89PdX2UKGgGR0CdsghQ3xWlaAdN6ANoCEdAqzzwyGi5/nV9lChoBkdAmpTy9du50GgHTegDaAhHQKs+Nb48EFJ1fZQoaAZHQJ2nOgsbvPVoB03oA2gIR0CrRLRG2CumdX2UKGgGR0CeHrHwgDA8aAdN6ANoCEdAq0ao1WKdhHV9lChoBkdAnZA0bT+efGgHTegDaAhHQKtNzBhx5s11fZQoaAZHQJ1p4dxQzk9oB03oA2gIR0CrT+5aNdZ8dX2UKGgGR0Cc3P8Hv+fiaAdN6ANoCEdAq1xjJQtSRHV9lChoBkdAnJkHzpX6qWgHTegDaAhHQKtfEQ2dd3V1fZQoaAZHQJ3Lxnyup0hoB03oA2gIR0CrZgVAiV0LdX2UKGgGR0CcWHwblzU7aAdN6ANoCEdAq2dQOQQtjHV9lChoBkdAnGNGHtWuHWgHTegDaAhHQKtuuXgLqlh1fZQoaAZHQJ4rwvQF9rpoB03oA2gIR0CrcY0Wl/H6dX2UKGgGR0CdkaKOktVaaAdN6ANoCEdAq3p6dc0Lt3V9lChoBkdAnko2+fywwGgHTegDaAhHQKt7wqgAZKp1fZQoaAZHQJry/9S/CZZoB03oA2gIR0CrgkL7XQMQdX2UKGgGR0CcYY9ehPCVaAdN6ANoCEdAq4RMyvcJt3V9lChoBkdAnXyXYUWVNmgHTegDaAhHQKuK+v3ai9J1fZQoaAZHQJ09a1JDmbNoB03oA2gIR0CrjLEOiFj/dX2UKGgGR0CdFLeGfwqiaAdN6ANoCEdAq5agVCXyAnV9lChoBkdAnvKgY1pCbGgHTegDaAhHQKuYzP6be/J1fZQoaAZHQJ6DrvLHMlloB03oA2gIR0Crn69q+JxedX2UKGgGR0CeK6HjZL7GaAdN6ANoCEdAq6EAx8D0UXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 43943, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6de1ba9bce4adbbcd1f66ab40b46925b6869b6077b6f38fad2e160289386aeab
3
+ size 1215435
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2071.915337037365, "std_reward": 28.056137110817783, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-11T19:38:36.283568"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06bb502a3698d9b1717131815edf65a5c683ee97134e4d6b3d49dac99416e83e
3
+ size 2136