--- library_name: transformers base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: scibert_finetuned results: [] --- # scibert_finetuned This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4243 - Accuracy: 0.9055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4842 | 1.0 | 101 | 0.3403 | 0.8507 | | 0.3146 | 2.0 | 202 | 0.4111 | 0.8756 | | 0.2277 | 3.0 | 303 | 0.4243 | 0.9055 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu118 - Datasets 3.1.0 - Tokenizers 0.21.0