--- datasets: - danjacobellis/LSDIR_540 - danjacobellis/musdb_segments --- # Wavelet Learned Lossy Compression - [Project page and documentation](https://danjacobellis.net/walloc) - [Paper: "Learned Compression for Compressed Learning"](https://danjacobellis.net/_static/walloc.pdf) - [Additional code accompanying the paper](https://github.com/danjacobellis/lccl) ![](https://danjacobellis.net/walloc/_images/radar.svg) Comparison of WaLLoC with other autoencoder designs for RGB Images and stereo audio. ![](https://danjacobellis.net/walloc/_images/wpt.svg) Example of forward and inverse WPT with $J=2$ levels. Each level applies filters $\text{L}_{\text{A}}$ and $\text{H}_{\text{A}}$ independently to each of the signal channels, followed by downsampling by two $(\downarrow 2)$. An inverse level consists of upsampling $(\uparrow 2)$ followed by $\text{L}_{\text{S}}$ and $\text{H}_{\text{S}}$, then summing the two channels. The full WPT $\tilde{\textbf{X}}$ of consists of $J$ levels. ![](https://danjacobellis.net/walloc/_images/walloc.svg) WaLLoC’s encode-decode pipeline. The entropy bottleneck and entropy coding steps are only required to achieve high compression ratios for storage and transmission. For compressed-domain learning where dimensionality reduction is the primary goal, these steps can be skipped to reduce overhead and completely eliminate CPU-GPU transfers. # Wavelet Learned Lossy Compression (WaLLoC) WaLLoC sandwiches a convolutional autoencoder between time-frequency analysis and synthesis transforms using CDF 9/7 wavelet filters. The time-frequency transform increases the number of signal channels, but reduces the temporal or spatial resolution, resulting in lower GPU memory consumption and higher throughput. WaLLoC's training procedure is highly simplified compared to other $\beta$-VAEs, VQ-VAEs, and neural codecs, but still offers significant dimensionality reduction and compression. This makes it suitable for dataset storage and compressed-domain learning. It currently supports 1D and 2D signals, including mono, stereo, or multi-channel audio, and grayscale, RGB, or hyperspectral images. ## Installation 1. Follow the installation instructions for [torch](https://pytorch.org/get-started/locally/) 2. Install WaLLoC and other dependencies via pip ```pip install walloc PyWavelets pytorch-wavelets``` ## Image compression ```python import os import torch import json import matplotlib.pyplot as plt import numpy as np from types import SimpleNamespace from PIL import Image, ImageEnhance from IPython.display import display from torchvision.transforms import ToPILImage, PILToTensor from walloc import walloc from walloc.walloc import latent_to_pil, pil_to_latent ``` ### Load the model from a pre-trained checkpoint ```wget https://hf.co/danjacobellis/walloc/resolve/main/RGB_16x.pth``` ```wget https://hf.co/danjacobellis/walloc/resolve/main/RGB_16x.json``` ```python device = "cpu" codec_config = SimpleNamespace(**json.load(open("RGB_16x.json"))) checkpoint = torch.load("RGB_16x.pth",map_location="cpu",weights_only=False) codec = walloc.Codec2D( channels = codec_config.channels, J = codec_config.J, Ne = codec_config.Ne, Nd = codec_config.Nd, latent_dim = codec_config.latent_dim, latent_bits = codec_config.latent_bits, lightweight_encode = codec_config.lightweight_encode ) codec.load_state_dict(checkpoint['model_state_dict']) codec = codec.to(device) codec.eval(); ``` ### Load an example image ```wget "https://r0k.us/graphics/kodak/kodak/kodim05.png"``` ```python img = Image.open("kodim05.png") img ``` ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_11_0.png) ### Full encoding and decoding pipeline with .forward() * If `codec.eval()` is called, the latent is rounded to nearest integer. * If `codec.train()` is called, uniform noise is added instead of rounding. ```python with torch.no_grad(): codec.eval() x = PILToTensor()(img).to(torch.float) x = (x/255 - 0.5).unsqueeze(0).to(device) x_hat, _, _ = codec(x) ToPILImage()(x_hat[0]+0.5) ``` ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_13_0.png) ### Accessing latents ```python with torch.no_grad(): X = codec.wavelet_analysis(x,J=codec.J) z = codec.encoder[0:2](X) z_hat = codec.encoder[2](z) X_hat = codec.decoder(z_hat) x_rec = codec.wavelet_synthesis(X_hat,J=codec.J) print(f"dimensionality reduction: {x.numel()/z.numel()}×") ``` dimensionality reduction: 16.0× ```python plt.figure(figsize=(5,3),dpi=150) plt.hist( z.flatten().numpy(), range=(-25,25), bins=151, density=True, ); plt.title("Histogram of latents") plt.xlim([-25,25]); ``` ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_16_0.png) # Lossless compression of latents ```python def scale_for_display(img, n_bits): scale_factor = (2**8 - 1) / (2**n_bits - 1) lut = [int(i * scale_factor) for i in range(2**n_bits)] channels = img.split() scaled_channels = [ch.point(lut * 2**(8-n_bits)) for ch in channels] return Image.merge(img.mode, scaled_channels) ``` ### Single channel PNG (L) ```python z_padded = torch.nn.functional.pad(z_hat, (0, 0, 0, 0, 0, 4)) z_pil = latent_to_pil(z_padded,codec.latent_bits,1) display(scale_for_display(z_pil[0], codec.latent_bits)) z_pil[0].save('latent.png') png = [Image.open("latent.png")] z_rec = pil_to_latent(png,16,codec.latent_bits,1) assert(z_rec.equal(z_padded)) print("compression_ratio: ", x.numel()/os.path.getsize("latent.png")) ``` ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_20_0.png) compression_ratio: 26.729991842653856 ### Three channel WebP (RGB) ```python z_pil = latent_to_pil(z_hat,codec.latent_bits,3) display(scale_for_display(z_pil[0], codec.latent_bits)) z_pil[0].save('latent.webp',lossless=True) webp = [Image.open("latent.webp")] z_rec = pil_to_latent(webp,12,codec.latent_bits,3) assert(z_rec.equal(z_hat)) print("compression_ratio: ", x.numel()/os.path.getsize("latent.webp")) ``` ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_22_0.png) compression_ratio: 28.811254396248536 ### Four channel TIF (CMYK) ```python z_padded = torch.nn.functional.pad(z_hat, (0, 0, 0, 0, 0, 4)) z_pil = latent_to_pil(z_padded,codec.latent_bits,4) display(scale_for_display(z_pil[0], codec.latent_bits)) z_pil[0].save('latent.tif',compression="tiff_adobe_deflate") tif = [Image.open("latent.tif")] z_rec = pil_to_latent(tif,16,codec.latent_bits,4) assert(z_rec.equal(z_padded)) print("compression_ratio: ", x.numel()/os.path.getsize("latent.tif")) ``` ![jpeg](README_files/README_24_0.jpg) compression_ratio: 21.04034530731638 # Audio Compression ```python import io import os import torch import torchaudio import json import matplotlib.pyplot as plt from types import SimpleNamespace from PIL import Image from datasets import load_dataset from einops import rearrange from IPython.display import Audio from walloc import walloc ``` ### Load the model from a pre-trained checkpoint ```wget https://hf.co/danjacobellis/walloc/resolve/main/stereo_5x.pth``` ```wget https://hf.co/danjacobellis/walloc/resolve/main/stereo_5x.json``` ```python codec_config = SimpleNamespace(**json.load(open("stereo_5x.json"))) checkpoint = torch.load("stereo_5x.pth",map_location="cpu",weights_only=False) codec = walloc.Codec1D( channels = codec_config.channels, J = codec_config.J, Ne = codec_config.Ne, Nd = codec_config.Nd, latent_dim = codec_config.latent_dim, latent_bits = codec_config.latent_bits, lightweight_encode = codec_config.lightweight_encode, post_filter = codec_config.post_filter ) codec.load_state_dict(checkpoint['model_state_dict']) codec.eval(); ``` /home/dan/g/lib/python3.12/site-packages/torch/nn/utils/weight_norm.py:143: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`. WeightNorm.apply(module, name, dim) ### Load example audio track ```python MUSDB = load_dataset("danjacobellis/musdb_segments_val",split='validation') audio_buff = io.BytesIO(MUSDB[40]['audio_mix']['bytes']) x, fs = torchaudio.load(audio_buff,normalize=False) x = x.to(torch.float) x = x - x.mean() max_abs = x.abs().max() x = x / (max_abs + 1e-8) x = x/2 ``` ```python Audio(x[:,:2**20],rate=44100) ``` ### Full encoding and decoding pipeline with .forward() * If `codec.eval()` is called, the latent is rounded to nearest integer. * If `codec.train()` is called, uniform noise is added instead of rounding. ```python with torch.no_grad(): codec.eval() x_hat, _, _ = codec(x.unsqueeze(0)) ``` ```python Audio(x_hat[0,:,:2**20],rate=44100) ``` ### Accessing latents ```python with torch.no_grad(): X = codec.wavelet_analysis(x.unsqueeze(0),J=codec.J) z = codec.encoder[0:2](X) z_hat = codec.encoder[2](z) X_hat = codec.decoder(z_hat) x_rec = codec.wavelet_synthesis(X_hat,J=codec.J) print(f"dimensionality reduction: {x.numel()/z.numel():.4g}×") ``` dimensionality reduction: 4.74× ```python plt.figure(figsize=(5,3),dpi=150) plt.hist( z.flatten().numpy(), range=(-25,25), bins=151, density=True, ); plt.title("Histogram of latents") plt.xlim([-25,25]); ``` ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_39_0.png) # Lossless compression of latents ```python def pad(audio, p=2**16): B,C,L = audio.shape padding_size = (p - (L % p)) % p if padding_size > 0: audio = torch.nn.functional.pad(audio, (0, padding_size), mode='constant', value=0) return audio with torch.no_grad(): L = x.shape[-1] x_padded = pad(x.unsqueeze(0), 2**16) X = codec.wavelet_analysis(x_padded,codec.J) z = codec.encoder(X) ℓ = z.shape[-1] z = pad(z,128) z = rearrange(z, 'b c (w h) -> b c w h', h=128).to("cpu") webp = walloc.latent_to_pil(z,codec.latent_bits,3)[0] buff = io.BytesIO() webp.save(buff, format='WEBP', lossless=True) webp_bytes = buff.getbuffer() ``` ```python print("compression_ratio: ", x.numel()/len(webp_bytes)) webp ``` compression_ratio: 9.83650170496386 ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_42_1.png) # Decoding ```python with torch.no_grad(): z_hat = walloc.pil_to_latent( [Image.open(buff)], codec.latent_dim, codec.latent_bits, 3) X_hat = codec.decoder(rearrange(z_hat, 'b c h w -> b c (h w)')[:,:,:ℓ]) x_hat = codec.wavelet_synthesis(X_hat,codec.J) x_hat = codec.post(x_hat) x_hat = codec.clamp(x_hat[0,:,:L]) ``` ```python start, end = 0, 1000 plt.figure(figsize=(8, 3), dpi=180) plt.plot(x[0, start:end], alpha=0.5, c='b', label='Ch.1 (Uncompressed)') plt.plot(x_hat[0, start:end], alpha=0.5, c='g', label='Ch.1 (WaLLoC)') plt.plot(x[1, start:end], alpha=0.5, c='r', label='Ch.2 (Uncompressed)') plt.plot(x_hat[1, start:end], alpha=0.5, c='purple', label='Ch.2 (WaLLoC)') plt.xlim([400,1000]) plt.ylim([-0.6,0.3]) plt.legend(loc='lower center') plt.box(False) plt.xticks([]) plt.yticks([]); ``` ![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/README_45_0.png) ```python !jupyter nbconvert --to markdown README.ipynb ``` [NbConvertApp] Converting notebook README.ipynb to markdown [NbConvertApp] Support files will be in README_files/ [NbConvertApp] Writing 1409744 bytes to README.md ```python !sed -i 's|!\[png](README_files/\(README_[0-9]*_[0-9]*\.png\))|![png](https://huggingface.co/danjacobellis/walloc/resolve/main/README_files/\1)|g' README.md ```