--- base_model: daniel-gordon/bioBERT-finetuned-financial-phrasebank tags: - generated_from_trainer metrics: - f1 model-index: - name: bioBERT-finetuned-biopharma-dive results: [] --- # bioBERT-finetuned-biopharma-dive This model is a fine-tuned version of [daniel-gordon/bioBERT-finetuned-financial-phrasebank](https://huggingface.co/daniel-gordon/bioBERT-finetuned-financial-phrasebank) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9018 - F1: 0.6009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 110 | 0.9018 | 0.6009 | | No log | 2.0 | 220 | 0.9249 | 0.5851 | | No log | 3.0 | 330 | 1.0173 | 0.5835 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0