d-Matrix commited on
Commit
eed5be4
1 Parent(s): e59ebd7

Update configuration_llama.py

Browse files
Files changed (1) hide show
  1. configuration_llama.py +81 -11
configuration_llama.py CHANGED
@@ -25,9 +25,6 @@ from transformers.utils import logging
25
 
26
  logger = logging.get_logger(__name__)
27
 
28
- LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
29
-
30
-
31
  class LlamaConfig(PretrainedConfig):
32
  r"""
33
  This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
@@ -47,24 +44,56 @@ class LlamaConfig(PretrainedConfig):
47
  intermediate_size (`int`, *optional*, defaults to 11008):
48
  Dimension of the MLP representations.
49
  num_hidden_layers (`int`, *optional*, defaults to 32):
50
- Number of hidden layers in the Transformer encoder.
51
  num_attention_heads (`int`, *optional*, defaults to 32):
52
- Number of attention heads for each attention layer in the Transformer encoder.
 
 
 
 
 
 
 
 
53
  hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
54
  The non-linear activation function (function or string) in the decoder.
55
  max_position_embeddings (`int`, *optional*, defaults to 2048):
56
- The maximum sequence length that this model might ever be used with. Typically set this to something large
57
- just in case (e.g., 512 or 1024 or 2048).
58
  initializer_range (`float`, *optional*, defaults to 0.02):
59
  The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
60
- rms_norm_eps (`float`, *optional*, defaults to 1e-12):
61
  The epsilon used by the rms normalization layers.
62
  use_cache (`bool`, *optional*, defaults to `True`):
63
  Whether or not the model should return the last key/values attentions (not used by all models). Only
64
  relevant if `config.is_decoder=True`.
65
- tie_word_embeddings(`bool`, *optional*, defaults to `False`):
 
 
 
 
 
 
 
 
 
 
 
66
  Whether to tie weight embeddings
67
- Example:
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
  ```python
70
  >>> from transformers import LlamaModel, LlamaConfig
@@ -78,7 +107,9 @@ class LlamaConfig(PretrainedConfig):
78
  >>> # Accessing the model configuration
79
  >>> configuration = model.config
80
  ```"""
 
81
  model_type = "llama"
 
82
 
83
  def __init__(
84
  self,
@@ -87,15 +118,21 @@ class LlamaConfig(PretrainedConfig):
87
  intermediate_size=11008,
88
  num_hidden_layers=32,
89
  num_attention_heads=32,
 
90
  hidden_act="silu",
91
  max_position_embeddings=2048,
92
  initializer_range=0.02,
93
  rms_norm_eps=1e-6,
94
  use_cache=True,
95
- pad_token_id=0,
96
  bos_token_id=1,
97
  eos_token_id=2,
 
98
  tie_word_embeddings=False,
 
 
 
 
99
  **kwargs,
100
  ):
101
  self.vocab_size = vocab_size
@@ -104,10 +141,23 @@ class LlamaConfig(PretrainedConfig):
104
  self.intermediate_size = intermediate_size
105
  self.num_hidden_layers = num_hidden_layers
106
  self.num_attention_heads = num_attention_heads
 
 
 
 
 
 
107
  self.hidden_act = hidden_act
108
  self.initializer_range = initializer_range
109
  self.rms_norm_eps = rms_norm_eps
 
110
  self.use_cache = use_cache
 
 
 
 
 
 
111
  super().__init__(
112
  pad_token_id=pad_token_id,
113
  bos_token_id=bos_token_id,
@@ -115,3 +165,23 @@ class LlamaConfig(PretrainedConfig):
115
  tie_word_embeddings=tie_word_embeddings,
116
  **kwargs,
117
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  logger = logging.get_logger(__name__)
27
 
 
 
 
28
  class LlamaConfig(PretrainedConfig):
29
  r"""
30
  This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
 
44
  intermediate_size (`int`, *optional*, defaults to 11008):
45
  Dimension of the MLP representations.
46
  num_hidden_layers (`int`, *optional*, defaults to 32):
47
+ Number of hidden layers in the Transformer decoder.
48
  num_attention_heads (`int`, *optional*, defaults to 32):
49
+ Number of attention heads for each attention layer in the Transformer decoder.
50
+ num_key_value_heads (`int`, *optional*):
51
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
52
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
53
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
54
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
55
+ by meanpooling all the original heads within that group. For more details checkout [this
56
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
57
+ `num_attention_heads`.
58
  hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
59
  The non-linear activation function (function or string) in the decoder.
60
  max_position_embeddings (`int`, *optional*, defaults to 2048):
61
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
62
+ Llama 2 up to 4096, CodeLlama up to 16384.
63
  initializer_range (`float`, *optional*, defaults to 0.02):
64
  The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
65
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
66
  The epsilon used by the rms normalization layers.
67
  use_cache (`bool`, *optional*, defaults to `True`):
68
  Whether or not the model should return the last key/values attentions (not used by all models). Only
69
  relevant if `config.is_decoder=True`.
70
+ pad_token_id (`int`, *optional*):
71
+ Padding token id.
72
+ bos_token_id (`int`, *optional*, defaults to 1):
73
+ Beginning of stream token id.
74
+ eos_token_id (`int`, *optional*, defaults to 2):
75
+ End of stream token id.
76
+ pretraining_tp (`int`, *optional*, defaults to 1):
77
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
78
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
79
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
80
+ issue](https://github.com/pytorch/pytorch/issues/76232).
81
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
82
  Whether to tie weight embeddings
83
+ rope_theta (`float`, *optional*, defaults to 10000.0):
84
+ The base period of the RoPE embeddings.
85
+ rope_scaling (`Dict`, *optional*):
86
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
87
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
88
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
89
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
90
+ these scaling strategies behave:
91
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
92
+ experimental feature, subject to breaking API changes in future versions.
93
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
94
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
95
+ attention_dropout (`float`, *optional*, defaults to 0.0):
96
+ The dropout ratio for the attention probabilities.
97
 
98
  ```python
99
  >>> from transformers import LlamaModel, LlamaConfig
 
107
  >>> # Accessing the model configuration
108
  >>> configuration = model.config
109
  ```"""
110
+
111
  model_type = "llama"
112
+ keys_to_ignore_at_inference = ["past_key_values"]
113
 
114
  def __init__(
115
  self,
 
118
  intermediate_size=11008,
119
  num_hidden_layers=32,
120
  num_attention_heads=32,
121
+ num_key_value_heads=None,
122
  hidden_act="silu",
123
  max_position_embeddings=2048,
124
  initializer_range=0.02,
125
  rms_norm_eps=1e-6,
126
  use_cache=True,
127
+ pad_token_id=None,
128
  bos_token_id=1,
129
  eos_token_id=2,
130
+ pretraining_tp=1,
131
  tie_word_embeddings=False,
132
+ rope_theta=10000.0,
133
+ rope_scaling=None,
134
+ attention_bias=False,
135
+ attention_dropout=0.0,
136
  **kwargs,
137
  ):
138
  self.vocab_size = vocab_size
 
141
  self.intermediate_size = intermediate_size
142
  self.num_hidden_layers = num_hidden_layers
143
  self.num_attention_heads = num_attention_heads
144
+
145
+ # for backward compatibility
146
+ if num_key_value_heads is None:
147
+ num_key_value_heads = num_attention_heads
148
+
149
+ self.num_key_value_heads = num_key_value_heads
150
  self.hidden_act = hidden_act
151
  self.initializer_range = initializer_range
152
  self.rms_norm_eps = rms_norm_eps
153
+ self.pretraining_tp = pretraining_tp
154
  self.use_cache = use_cache
155
+ self.rope_theta = rope_theta
156
+ self.rope_scaling = rope_scaling
157
+ self._rope_scaling_validation()
158
+ self.attention_bias = attention_bias
159
+ self.attention_dropout = attention_dropout
160
+
161
  super().__init__(
162
  pad_token_id=pad_token_id,
163
  bos_token_id=bos_token_id,
 
165
  tie_word_embeddings=tie_word_embeddings,
166
  **kwargs,
167
  )
168
+
169
+ def _rope_scaling_validation(self):
170
+ """
171
+ Validate the `rope_scaling` configuration.
172
+ """
173
+ if self.rope_scaling is None:
174
+ return
175
+
176
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
177
+ raise ValueError(
178
+ "`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
179
+ )
180
+ rope_scaling_type = self.rope_scaling.get("type", None)
181
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
182
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
183
+ raise ValueError(
184
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
185
+ )
186
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
187
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")