d-Matrix
commited on
Commit
•
eed5be4
1
Parent(s):
e59ebd7
Update configuration_llama.py
Browse files- configuration_llama.py +81 -11
configuration_llama.py
CHANGED
@@ -25,9 +25,6 @@ from transformers.utils import logging
|
|
25 |
|
26 |
logger = logging.get_logger(__name__)
|
27 |
|
28 |
-
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
29 |
-
|
30 |
-
|
31 |
class LlamaConfig(PretrainedConfig):
|
32 |
r"""
|
33 |
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
@@ -47,24 +44,56 @@ class LlamaConfig(PretrainedConfig):
|
|
47 |
intermediate_size (`int`, *optional*, defaults to 11008):
|
48 |
Dimension of the MLP representations.
|
49 |
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
-
Number of hidden layers in the Transformer
|
51 |
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
-
Number of attention heads for each attention layer in the Transformer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
54 |
The non-linear activation function (function or string) in the decoder.
|
55 |
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
56 |
-
The maximum sequence length that this model might ever be used with.
|
57 |
-
|
58 |
initializer_range (`float`, *optional*, defaults to 0.02):
|
59 |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
60 |
-
rms_norm_eps (`float`, *optional*, defaults to 1e-
|
61 |
The epsilon used by the rms normalization layers.
|
62 |
use_cache (`bool`, *optional*, defaults to `True`):
|
63 |
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
64 |
relevant if `config.is_decoder=True`.
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
Whether to tie weight embeddings
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
```python
|
70 |
>>> from transformers import LlamaModel, LlamaConfig
|
@@ -78,7 +107,9 @@ class LlamaConfig(PretrainedConfig):
|
|
78 |
>>> # Accessing the model configuration
|
79 |
>>> configuration = model.config
|
80 |
```"""
|
|
|
81 |
model_type = "llama"
|
|
|
82 |
|
83 |
def __init__(
|
84 |
self,
|
@@ -87,15 +118,21 @@ class LlamaConfig(PretrainedConfig):
|
|
87 |
intermediate_size=11008,
|
88 |
num_hidden_layers=32,
|
89 |
num_attention_heads=32,
|
|
|
90 |
hidden_act="silu",
|
91 |
max_position_embeddings=2048,
|
92 |
initializer_range=0.02,
|
93 |
rms_norm_eps=1e-6,
|
94 |
use_cache=True,
|
95 |
-
pad_token_id=
|
96 |
bos_token_id=1,
|
97 |
eos_token_id=2,
|
|
|
98 |
tie_word_embeddings=False,
|
|
|
|
|
|
|
|
|
99 |
**kwargs,
|
100 |
):
|
101 |
self.vocab_size = vocab_size
|
@@ -104,10 +141,23 @@ class LlamaConfig(PretrainedConfig):
|
|
104 |
self.intermediate_size = intermediate_size
|
105 |
self.num_hidden_layers = num_hidden_layers
|
106 |
self.num_attention_heads = num_attention_heads
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
self.hidden_act = hidden_act
|
108 |
self.initializer_range = initializer_range
|
109 |
self.rms_norm_eps = rms_norm_eps
|
|
|
110 |
self.use_cache = use_cache
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
super().__init__(
|
112 |
pad_token_id=pad_token_id,
|
113 |
bos_token_id=bos_token_id,
|
@@ -115,3 +165,23 @@ class LlamaConfig(PretrainedConfig):
|
|
115 |
tie_word_embeddings=tie_word_embeddings,
|
116 |
**kwargs,
|
117 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
logger = logging.get_logger(__name__)
|
27 |
|
|
|
|
|
|
|
28 |
class LlamaConfig(PretrainedConfig):
|
29 |
r"""
|
30 |
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
|
|
44 |
intermediate_size (`int`, *optional*, defaults to 11008):
|
45 |
Dimension of the MLP representations.
|
46 |
num_hidden_layers (`int`, *optional*, defaults to 32):
|
47 |
+
Number of hidden layers in the Transformer decoder.
|
48 |
num_attention_heads (`int`, *optional*, defaults to 32):
|
49 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
50 |
+
num_key_value_heads (`int`, *optional*):
|
51 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
52 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
53 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
54 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
55 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
56 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
57 |
+
`num_attention_heads`.
|
58 |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
59 |
The non-linear activation function (function or string) in the decoder.
|
60 |
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
61 |
+
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
|
62 |
+
Llama 2 up to 4096, CodeLlama up to 16384.
|
63 |
initializer_range (`float`, *optional*, defaults to 0.02):
|
64 |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
65 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
66 |
The epsilon used by the rms normalization layers.
|
67 |
use_cache (`bool`, *optional*, defaults to `True`):
|
68 |
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
69 |
relevant if `config.is_decoder=True`.
|
70 |
+
pad_token_id (`int`, *optional*):
|
71 |
+
Padding token id.
|
72 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
73 |
+
Beginning of stream token id.
|
74 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
75 |
+
End of stream token id.
|
76 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
77 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
78 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
|
79 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
80 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
81 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
82 |
Whether to tie weight embeddings
|
83 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
84 |
+
The base period of the RoPE embeddings.
|
85 |
+
rope_scaling (`Dict`, *optional*):
|
86 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
87 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
88 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
89 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
90 |
+
these scaling strategies behave:
|
91 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
92 |
+
experimental feature, subject to breaking API changes in future versions.
|
93 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
94 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
95 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
96 |
+
The dropout ratio for the attention probabilities.
|
97 |
|
98 |
```python
|
99 |
>>> from transformers import LlamaModel, LlamaConfig
|
|
|
107 |
>>> # Accessing the model configuration
|
108 |
>>> configuration = model.config
|
109 |
```"""
|
110 |
+
|
111 |
model_type = "llama"
|
112 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
113 |
|
114 |
def __init__(
|
115 |
self,
|
|
|
118 |
intermediate_size=11008,
|
119 |
num_hidden_layers=32,
|
120 |
num_attention_heads=32,
|
121 |
+
num_key_value_heads=None,
|
122 |
hidden_act="silu",
|
123 |
max_position_embeddings=2048,
|
124 |
initializer_range=0.02,
|
125 |
rms_norm_eps=1e-6,
|
126 |
use_cache=True,
|
127 |
+
pad_token_id=None,
|
128 |
bos_token_id=1,
|
129 |
eos_token_id=2,
|
130 |
+
pretraining_tp=1,
|
131 |
tie_word_embeddings=False,
|
132 |
+
rope_theta=10000.0,
|
133 |
+
rope_scaling=None,
|
134 |
+
attention_bias=False,
|
135 |
+
attention_dropout=0.0,
|
136 |
**kwargs,
|
137 |
):
|
138 |
self.vocab_size = vocab_size
|
|
|
141 |
self.intermediate_size = intermediate_size
|
142 |
self.num_hidden_layers = num_hidden_layers
|
143 |
self.num_attention_heads = num_attention_heads
|
144 |
+
|
145 |
+
# for backward compatibility
|
146 |
+
if num_key_value_heads is None:
|
147 |
+
num_key_value_heads = num_attention_heads
|
148 |
+
|
149 |
+
self.num_key_value_heads = num_key_value_heads
|
150 |
self.hidden_act = hidden_act
|
151 |
self.initializer_range = initializer_range
|
152 |
self.rms_norm_eps = rms_norm_eps
|
153 |
+
self.pretraining_tp = pretraining_tp
|
154 |
self.use_cache = use_cache
|
155 |
+
self.rope_theta = rope_theta
|
156 |
+
self.rope_scaling = rope_scaling
|
157 |
+
self._rope_scaling_validation()
|
158 |
+
self.attention_bias = attention_bias
|
159 |
+
self.attention_dropout = attention_dropout
|
160 |
+
|
161 |
super().__init__(
|
162 |
pad_token_id=pad_token_id,
|
163 |
bos_token_id=bos_token_id,
|
|
|
165 |
tie_word_embeddings=tie_word_embeddings,
|
166 |
**kwargs,
|
167 |
)
|
168 |
+
|
169 |
+
def _rope_scaling_validation(self):
|
170 |
+
"""
|
171 |
+
Validate the `rope_scaling` configuration.
|
172 |
+
"""
|
173 |
+
if self.rope_scaling is None:
|
174 |
+
return
|
175 |
+
|
176 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
177 |
+
raise ValueError(
|
178 |
+
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
|
179 |
+
)
|
180 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
181 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
182 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
183 |
+
raise ValueError(
|
184 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
185 |
+
)
|
186 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
187 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|