d-Matrix
commited on
Update configuration_llama.py
Browse files- configuration_llama.py +81 -11
configuration_llama.py
CHANGED
|
@@ -25,9 +25,6 @@ from transformers.utils import logging
|
|
| 25 |
|
| 26 |
logger = logging.get_logger(__name__)
|
| 27 |
|
| 28 |
-
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
| 29 |
-
|
| 30 |
-
|
| 31 |
class LlamaConfig(PretrainedConfig):
|
| 32 |
r"""
|
| 33 |
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
|
@@ -47,24 +44,56 @@ class LlamaConfig(PretrainedConfig):
|
|
| 47 |
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 48 |
Dimension of the MLP representations.
|
| 49 |
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 50 |
-
Number of hidden layers in the Transformer
|
| 51 |
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 52 |
-
Number of attention heads for each attention layer in the Transformer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 54 |
The non-linear activation function (function or string) in the decoder.
|
| 55 |
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 56 |
-
The maximum sequence length that this model might ever be used with.
|
| 57 |
-
|
| 58 |
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 59 |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 60 |
-
rms_norm_eps (`float`, *optional*, defaults to 1e-
|
| 61 |
The epsilon used by the rms normalization layers.
|
| 62 |
use_cache (`bool`, *optional*, defaults to `True`):
|
| 63 |
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 64 |
relevant if `config.is_decoder=True`.
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
Whether to tie weight embeddings
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
```python
|
| 70 |
>>> from transformers import LlamaModel, LlamaConfig
|
|
@@ -78,7 +107,9 @@ class LlamaConfig(PretrainedConfig):
|
|
| 78 |
>>> # Accessing the model configuration
|
| 79 |
>>> configuration = model.config
|
| 80 |
```"""
|
|
|
|
| 81 |
model_type = "llama"
|
|
|
|
| 82 |
|
| 83 |
def __init__(
|
| 84 |
self,
|
|
@@ -87,15 +118,21 @@ class LlamaConfig(PretrainedConfig):
|
|
| 87 |
intermediate_size=11008,
|
| 88 |
num_hidden_layers=32,
|
| 89 |
num_attention_heads=32,
|
|
|
|
| 90 |
hidden_act="silu",
|
| 91 |
max_position_embeddings=2048,
|
| 92 |
initializer_range=0.02,
|
| 93 |
rms_norm_eps=1e-6,
|
| 94 |
use_cache=True,
|
| 95 |
-
pad_token_id=
|
| 96 |
bos_token_id=1,
|
| 97 |
eos_token_id=2,
|
|
|
|
| 98 |
tie_word_embeddings=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
**kwargs,
|
| 100 |
):
|
| 101 |
self.vocab_size = vocab_size
|
|
@@ -104,10 +141,23 @@ class LlamaConfig(PretrainedConfig):
|
|
| 104 |
self.intermediate_size = intermediate_size
|
| 105 |
self.num_hidden_layers = num_hidden_layers
|
| 106 |
self.num_attention_heads = num_attention_heads
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
self.hidden_act = hidden_act
|
| 108 |
self.initializer_range = initializer_range
|
| 109 |
self.rms_norm_eps = rms_norm_eps
|
|
|
|
| 110 |
self.use_cache = use_cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
super().__init__(
|
| 112 |
pad_token_id=pad_token_id,
|
| 113 |
bos_token_id=bos_token_id,
|
|
@@ -115,3 +165,23 @@ class LlamaConfig(PretrainedConfig):
|
|
| 115 |
tie_word_embeddings=tie_word_embeddings,
|
| 116 |
**kwargs,
|
| 117 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
logger = logging.get_logger(__name__)
|
| 27 |
|
|
|
|
|
|
|
|
|
|
| 28 |
class LlamaConfig(PretrainedConfig):
|
| 29 |
r"""
|
| 30 |
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
|
|
|
| 44 |
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 45 |
Dimension of the MLP representations.
|
| 46 |
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 47 |
+
Number of hidden layers in the Transformer decoder.
|
| 48 |
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 49 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 50 |
+
num_key_value_heads (`int`, *optional*):
|
| 51 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 52 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 53 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 54 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 55 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 56 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 57 |
+
`num_attention_heads`.
|
| 58 |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 59 |
The non-linear activation function (function or string) in the decoder.
|
| 60 |
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 61 |
+
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
|
| 62 |
+
Llama 2 up to 4096, CodeLlama up to 16384.
|
| 63 |
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 64 |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 65 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 66 |
The epsilon used by the rms normalization layers.
|
| 67 |
use_cache (`bool`, *optional*, defaults to `True`):
|
| 68 |
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 69 |
relevant if `config.is_decoder=True`.
|
| 70 |
+
pad_token_id (`int`, *optional*):
|
| 71 |
+
Padding token id.
|
| 72 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
| 73 |
+
Beginning of stream token id.
|
| 74 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
| 75 |
+
End of stream token id.
|
| 76 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
| 77 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
| 78 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
|
| 79 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
| 80 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
| 81 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 82 |
Whether to tie weight embeddings
|
| 83 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 84 |
+
The base period of the RoPE embeddings.
|
| 85 |
+
rope_scaling (`Dict`, *optional*):
|
| 86 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
| 87 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
| 88 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
| 89 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
| 90 |
+
these scaling strategies behave:
|
| 91 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
| 92 |
+
experimental feature, subject to breaking API changes in future versions.
|
| 93 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
| 94 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 95 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 96 |
+
The dropout ratio for the attention probabilities.
|
| 97 |
|
| 98 |
```python
|
| 99 |
>>> from transformers import LlamaModel, LlamaConfig
|
|
|
|
| 107 |
>>> # Accessing the model configuration
|
| 108 |
>>> configuration = model.config
|
| 109 |
```"""
|
| 110 |
+
|
| 111 |
model_type = "llama"
|
| 112 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 113 |
|
| 114 |
def __init__(
|
| 115 |
self,
|
|
|
|
| 118 |
intermediate_size=11008,
|
| 119 |
num_hidden_layers=32,
|
| 120 |
num_attention_heads=32,
|
| 121 |
+
num_key_value_heads=None,
|
| 122 |
hidden_act="silu",
|
| 123 |
max_position_embeddings=2048,
|
| 124 |
initializer_range=0.02,
|
| 125 |
rms_norm_eps=1e-6,
|
| 126 |
use_cache=True,
|
| 127 |
+
pad_token_id=None,
|
| 128 |
bos_token_id=1,
|
| 129 |
eos_token_id=2,
|
| 130 |
+
pretraining_tp=1,
|
| 131 |
tie_word_embeddings=False,
|
| 132 |
+
rope_theta=10000.0,
|
| 133 |
+
rope_scaling=None,
|
| 134 |
+
attention_bias=False,
|
| 135 |
+
attention_dropout=0.0,
|
| 136 |
**kwargs,
|
| 137 |
):
|
| 138 |
self.vocab_size = vocab_size
|
|
|
|
| 141 |
self.intermediate_size = intermediate_size
|
| 142 |
self.num_hidden_layers = num_hidden_layers
|
| 143 |
self.num_attention_heads = num_attention_heads
|
| 144 |
+
|
| 145 |
+
# for backward compatibility
|
| 146 |
+
if num_key_value_heads is None:
|
| 147 |
+
num_key_value_heads = num_attention_heads
|
| 148 |
+
|
| 149 |
+
self.num_key_value_heads = num_key_value_heads
|
| 150 |
self.hidden_act = hidden_act
|
| 151 |
self.initializer_range = initializer_range
|
| 152 |
self.rms_norm_eps = rms_norm_eps
|
| 153 |
+
self.pretraining_tp = pretraining_tp
|
| 154 |
self.use_cache = use_cache
|
| 155 |
+
self.rope_theta = rope_theta
|
| 156 |
+
self.rope_scaling = rope_scaling
|
| 157 |
+
self._rope_scaling_validation()
|
| 158 |
+
self.attention_bias = attention_bias
|
| 159 |
+
self.attention_dropout = attention_dropout
|
| 160 |
+
|
| 161 |
super().__init__(
|
| 162 |
pad_token_id=pad_token_id,
|
| 163 |
bos_token_id=bos_token_id,
|
|
|
|
| 165 |
tie_word_embeddings=tie_word_embeddings,
|
| 166 |
**kwargs,
|
| 167 |
)
|
| 168 |
+
|
| 169 |
+
def _rope_scaling_validation(self):
|
| 170 |
+
"""
|
| 171 |
+
Validate the `rope_scaling` configuration.
|
| 172 |
+
"""
|
| 173 |
+
if self.rope_scaling is None:
|
| 174 |
+
return
|
| 175 |
+
|
| 176 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
| 177 |
+
raise ValueError(
|
| 178 |
+
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
|
| 179 |
+
)
|
| 180 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
| 181 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
| 182 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
| 183 |
+
raise ValueError(
|
| 184 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
| 185 |
+
)
|
| 186 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
| 187 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|