#!/usr/bin/env python # coding: utf-8 # run with: # deepspeed --num_gpus=12 --num_nodes=3 pretrain_geneformer_w_deepspeed.py --deepspeed ds_config.json import datetime # imports import os os.environ["NCCL_DEBUG"] = "INFO" os.environ["OMPI_MCA_opal_cuda_support"] = "true" os.environ["CONDA_OVERRIDE_GLIBC"] = "2.56" import pickle import random import subprocess import numpy as np import pytz import torch from datasets import load_from_disk from transformers import BertConfig, BertForMaskedLM, TrainingArguments from .trainer import GeneformerTrainer seed_num = 0 random.seed(seed_num) np.random.seed(seed_num) seed_val = 42 torch.manual_seed(seed_val) torch.cuda.manual_seed_all(seed_val) # set local time/directories timezone = pytz.timezone("US/Eastern") rootdir = "/parent_ouput_directory" # set model parameters # model type model_type = "bert" # max input size max_input_size = 2**11 # 2048 # number of layers num_layers = 6 # number of attention heads num_attn_heads = 4 # number of embedding dimensions num_embed_dim = 256 # intermediate size intermed_size = num_embed_dim * 2 # activation function activ_fn = "relu" # initializer range, layer norm, dropout initializer_range = 0.02 layer_norm_eps = 1e-12 attention_probs_dropout_prob = 0.02 hidden_dropout_prob = 0.02 # set training parameters # total number of examples in Genecorpus-30M after QC filtering: num_examples = 27_406_208 # number gpus num_gpus = 12 # batch size for training and eval geneformer_batch_size = 12 # max learning rate max_lr = 1e-3 # learning schedule lr_schedule_fn = "linear" # warmup steps warmup_steps = 10_000 # number of epochs epochs = 3 # optimizer optimizer = "adamw" # weight_decay weight_decay = 0.001 # output directories current_date = datetime.datetime.now(tz=timezone) datestamp = f"{str(current_date.year)[-2:]}{current_date.month:02d}{current_date.day:02d}_{current_date.strftime('%X').replace(':','')}" run_name = f"{datestamp}_geneformer_30M_L{num_layers}_emb{num_embed_dim}_SL{max_input_size}_E{epochs}_B{geneformer_batch_size}_LR{max_lr}_LS{lr_schedule_fn}_WU{warmup_steps}_O{optimizer}_DS{num_gpus}" training_output_dir = f"{rootdir}/models/{run_name}/" logging_dir = f"{rootdir}/runs/{run_name}/" model_output_dir = os.path.join(training_output_dir, "models/") # ensure not overwriting previously saved model model_output_file = os.path.join(model_output_dir, "pytorch_model.bin") if os.path.isfile(model_output_file) is True: raise Exception("Model already saved to this directory.") # make training and model output directories subprocess.call(f"mkdir {training_output_dir}", shell=True) subprocess.call(f"mkdir {model_output_dir}", shell=True) # load gene_ensembl_id:token dictionary (e.g. https://huggingface.co/datasets/ctheodoris/Genecorpus-30M/tree/main/datasets/token_dictionary.pkl) with open("token_dictionary.pkl", "rb") as fp: token_dictionary = pickle.load(fp) # model configuration config = { "hidden_size": num_embed_dim, "num_hidden_layers": num_layers, "initializer_range": initializer_range, "layer_norm_eps": layer_norm_eps, "attention_probs_dropout_prob": attention_probs_dropout_prob, "hidden_dropout_prob": hidden_dropout_prob, "intermediate_size": intermed_size, "hidden_act": activ_fn, "max_position_embeddings": max_input_size, "model_type": model_type, "num_attention_heads": num_attn_heads, "pad_token_id": token_dictionary.get(""), "vocab_size": len(token_dictionary), # genes+2 for and tokens } config = BertConfig(**config) model = BertForMaskedLM(config) model = model.train() # define the training arguments training_args = { "learning_rate": max_lr, "do_train": True, "do_eval": False, "group_by_length": True, "length_column_name": "length", "disable_tqdm": False, "lr_scheduler_type": lr_schedule_fn, "warmup_steps": warmup_steps, "weight_decay": weight_decay, "per_device_train_batch_size": geneformer_batch_size, "num_train_epochs": epochs, "load_best_model_at_end": True, "save_strategy": "steps", "save_steps": num_examples / geneformer_batch_size / 8, # 8 saves per epoch "logging_steps": 1000, "output_dir": training_output_dir, "logging_dir": logging_dir, } training_args = TrainingArguments(**training_args) print("Starting training.") # define the trainer trainer = GeneformerTrainer( model=model, args=training_args, # pretraining corpus (e.g. https://huggingface.co/datasets/ctheodoris/Genecorpus-30M/tree/main/genecorpus_30M_2048.dataset) train_dataset=load_from_disk("genecorpus_30M_2048.dataset"), # file of lengths of each example cell (e.g. https://huggingface.co/datasets/ctheodoris/Genecorpus-30M/tree/main/genecorpus_30M_2048_sorted_lengths.pkl) example_lengths_file="genecorpus_30M_2048_sorted_lengths.pkl", token_dictionary=token_dictionary, ) # train trainer.train() # save model trainer.save_model(model_output_dir)