Christina Theodoris
commited on
Commit
·
f75f5ac
1
Parent(s):
b294421
Update readthedocs for classifier
Browse files
docs/source/geneformer.classifier.rst
CHANGED
|
@@ -6,4 +6,5 @@ geneformer.classifier
|
|
| 6 |
:undoc-members:
|
| 7 |
:show-inheritance:
|
| 8 |
:exclude-members:
|
|
|
|
| 9 |
validate_options
|
|
|
|
| 6 |
:undoc-members:
|
| 7 |
:show-inheritance:
|
| 8 |
:exclude-members:
|
| 9 |
+
valid_option_dict,
|
| 10 |
validate_options
|
geneformer/classifier.py
CHANGED
|
@@ -3,14 +3,11 @@ Geneformer classifier.
|
|
| 3 |
|
| 4 |
**Input data:**
|
| 5 |
|
| 6 |
-
Cell state classifier:
|
| 7 |
-
| Single-cell transcriptomes as Geneformer rank value encodings with cell state labels
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
| Dictionary in format {Gene_label: list(genes)} for gene labels
|
| 12 |
-
| and single-cell transcriptomes as Geneformer rank value encodings
|
| 13 |
-
| in Geneformer .dataset format (generated from single-cell RNAseq data by tokenizer.py)
|
| 14 |
|
| 15 |
**Usage:**
|
| 16 |
|
|
|
|
| 3 |
|
| 4 |
**Input data:**
|
| 5 |
|
| 6 |
+
| Cell state classifier:
|
| 7 |
+
| Single-cell transcriptomes as Geneformer rank value encodings with cell state labels in Geneformer .dataset format (generated from single-cell RNAseq data by tokenizer.py)
|
| 8 |
+
|
| 9 |
+
| Gene classifier:
|
| 10 |
+
| Dictionary in format {Gene_label: list(genes)} for gene labels and single-cell transcriptomes as Geneformer rank value encodings in Geneformer .dataset format (generated from single-cell RNAseq data by tokenizer.py)
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
**Usage:**
|
| 13 |
|
geneformer/tokenizer.py
CHANGED
|
@@ -89,7 +89,9 @@ class TranscriptomeTokenizer:
|
|
| 89 |
):
|
| 90 |
"""
|
| 91 |
Initialize tokenizer.
|
|
|
|
| 92 |
**Parameters:**
|
|
|
|
| 93 |
custom_attr_name_dict : None, dict
|
| 94 |
| Dictionary of custom attributes to be added to the dataset.
|
| 95 |
| Keys are the names of the attributes in the loom file.
|
|
@@ -98,15 +100,16 @@ class TranscriptomeTokenizer:
|
|
| 98 |
| Number of processes to use for dataset mapping.
|
| 99 |
chunk_size : int = 512
|
| 100 |
| Chunk size for anndata tokenizer.
|
| 101 |
-
model_input_size: int = 2048
|
| 102 |
| Max input size of model to truncate input to.
|
| 103 |
-
special_token: bool = False
|
| 104 |
-
|
|
| 105 |
gene_median_file : Path
|
| 106 |
| Path to pickle file containing dictionary of non-zero median
|
| 107 |
| gene expression values across Genecorpus-30M.
|
| 108 |
token_dictionary_file : Path
|
| 109 |
| Path to pickle file containing token dictionary (Ensembl IDs:token).
|
|
|
|
| 110 |
"""
|
| 111 |
# dictionary of custom attributes {output dataset column name: input .loom column name}
|
| 112 |
self.custom_attr_name_dict = custom_attr_name_dict
|
|
@@ -148,7 +151,9 @@ class TranscriptomeTokenizer:
|
|
| 148 |
):
|
| 149 |
"""
|
| 150 |
Tokenize .loom files in data_directory and save as tokenized .dataset in output_directory.
|
|
|
|
| 151 |
**Parameters:**
|
|
|
|
| 152 |
data_directory : Path
|
| 153 |
| Path to directory containing loom files or anndata files
|
| 154 |
output_directory : Path
|
|
@@ -159,6 +164,7 @@ class TranscriptomeTokenizer:
|
|
| 159 |
| Format of input files. Can be "loom" or "h5ad".
|
| 160 |
use_generator : bool
|
| 161 |
| Whether to use generator or dict for tokenization.
|
|
|
|
| 162 |
"""
|
| 163 |
tokenized_cells, cell_metadata = self.tokenize_files(
|
| 164 |
Path(data_directory), file_format
|
|
|
|
| 89 |
):
|
| 90 |
"""
|
| 91 |
Initialize tokenizer.
|
| 92 |
+
|
| 93 |
**Parameters:**
|
| 94 |
+
|
| 95 |
custom_attr_name_dict : None, dict
|
| 96 |
| Dictionary of custom attributes to be added to the dataset.
|
| 97 |
| Keys are the names of the attributes in the loom file.
|
|
|
|
| 100 |
| Number of processes to use for dataset mapping.
|
| 101 |
chunk_size : int = 512
|
| 102 |
| Chunk size for anndata tokenizer.
|
| 103 |
+
model_input_size : int = 2048
|
| 104 |
| Max input size of model to truncate input to.
|
| 105 |
+
special_token : bool = False
|
| 106 |
+
| Adds CLS token before and SEP token after rank value encoding.
|
| 107 |
gene_median_file : Path
|
| 108 |
| Path to pickle file containing dictionary of non-zero median
|
| 109 |
| gene expression values across Genecorpus-30M.
|
| 110 |
token_dictionary_file : Path
|
| 111 |
| Path to pickle file containing token dictionary (Ensembl IDs:token).
|
| 112 |
+
|
| 113 |
"""
|
| 114 |
# dictionary of custom attributes {output dataset column name: input .loom column name}
|
| 115 |
self.custom_attr_name_dict = custom_attr_name_dict
|
|
|
|
| 151 |
):
|
| 152 |
"""
|
| 153 |
Tokenize .loom files in data_directory and save as tokenized .dataset in output_directory.
|
| 154 |
+
|
| 155 |
**Parameters:**
|
| 156 |
+
|
| 157 |
data_directory : Path
|
| 158 |
| Path to directory containing loom files or anndata files
|
| 159 |
output_directory : Path
|
|
|
|
| 164 |
| Format of input files. Can be "loom" or "h5ad".
|
| 165 |
use_generator : bool
|
| 166 |
| Whether to use generator or dict for tokenization.
|
| 167 |
+
|
| 168 |
"""
|
| 169 |
tokenized_cells, cell_metadata = self.tokenize_files(
|
| 170 |
Path(data_directory), file_format
|