--- language: - es license: apache-2.0 base_model: openai/whisper-tiny tags: - hf-asr-leaderboard - generated_from_trainer datasets: - ctam8736/papi_asr metrics: - wer model-index: - name: Whisper Small Papi/Es results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Papi ASR Test type: ctam8736/papi_asr args: 'config: es, split: test' metrics: - name: Wer type: wer value: 29.977162647125255 --- # Whisper Small Papi/Es This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Papi ASR Test dataset. It achieves the following results on the evaluation set: - Loss: 0.1243 - Wer: 29.9772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0881 | 0.34 | 200 | 0.1414 | 23.3066 | | 0.0563 | 0.69 | 400 | 0.1388 | 23.8738 | | 0.0416 | 1.03 | 600 | 0.1367 | 26.2630 | | 0.044 | 1.38 | 800 | 0.1295 | 29.1289 | | 0.0546 | 1.72 | 1000 | 0.1243 | 29.9772 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0