--- language: "en" tags: - icefall - k2 - transducer - librispeech - ASR - stateless transducer - PyTorch - RNN-T - pruned RNN-T - speech recognition license: "apache-2.0" datasets: - librispeech metrics: - WER --- # Introduction This repo contains pre-trained model using . It is trained on full LibriSpeech dataset using pruned RNN-T loss from [k2](https://github.com/k2-fsa/k2). ## How to clone this repo ``` sudo apt-get install git-lfs git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12 cd icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12 git lfs pull ``` **Caution**: You have to run `git lfs pull`. Otherwise, you will be SAD later. The model in this repo is trained using the commit `1603744469d167d848e074f2ea98c587153205fa`. You can use ``` git clone https://github.com/k2-fsa/icefall cd icefall git checkout 1603744469d167d848e074f2ea98c587153205fa ``` to download `icefall`. The decoder architecture is modified from [Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419). A Conv1d layer is placed right after the input embedding layer. ----- ## Description This repo provides pre-trained transducer Conformer model for the LibriSpeech dataset using [icefall][icefall]. There are no RNNs in the decoder. The decoder is stateless and contains only an embedding layer and a Conv1d. The commands for training are: ``` cd egs/librispeech/ASR/ ./prepare.sh export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" . path.sh ./pruned_transducer_stateless/train.py \ --world-size 8 \ --num-epochs 60 \ --start-epoch 0 \ --exp-dir pruned_transducer_stateless/exp \ --full-libri 1 \ --max-duration 300 \ --prune-range 5 \ --lr-factor 5 \ --lm-scale 0.25 ``` The tensorboard training log can be found at The command for decoding is: ```bash epoch=42 avg=11 sym=1 # greedy search ./pruned_transducer_stateless/decode.py \ --epoch $epoch \ --avg $avg \ --exp-dir ./pruned_transducer_stateless/exp \ --max-duration 100 \ --decoding-method greedy_search \ --beam-size 4 \ --max-sym-per-frame $sym # modified beam search ./pruned_transducer_stateless/decode.py \ --epoch $epoch \ --avg $avg \ --exp-dir ./pruned_transducer_stateless/exp \ --max-duration 100 \ --decoding-method modified_beam_search \ --beam-size 4 # beam search # (not recommended) ./pruned_transducer_stateless/decode.py \ --epoch $epoch \ --avg $avg \ --exp-dir ./pruned_transducer_stateless/exp \ --max-duration 100 \ --decoding-method beam_search \ --beam-size 4 ``` You can find the decoding log for the above command in this repo (in the folder `log`). The WERs for the test datasets are | | test-clean | test-other | comment | |-------------------------------------|------------|------------|------------------------------------------| | greedy search (max sym per frame 1) | 2.62 | 6.37 | --epoch 42, --avg 11, --max-duration 100 | | greedy search (max sym per frame 2) | 2.62 | 6.37 | --epoch 42, --avg 11, --max-duration 100 | | greedy search (max sym per frame 3) | 2.62 | 6.37 | --epoch 42, --avg 11, --max-duration 100 | | modified beam search (beam size 4) | 2.56 | 6.27 | --epoch 42, --avg 11, --max-duration 100 | | beam search (beam size 4) | 2.57 | 6.27 | --epoch 42, --avg 11, --max-duration 100 | # File description - [log][log], this directory contains the decoding log and decoding results - [test_wavs][test_wavs], this directory contains wave files for testing the pre-trained model - [data][data], this directory contains files generated by [prepare.sh][prepare] - [exp][exp], this directory contains only one file: `preprained.pt` `exp/pretrained.pt` is generated by the following command: ```bash epoch=42 avg=11 ./pruned_transducer_stateless/export.py \ --exp-dir ./pruned_transducer_stateless/exp \ --bpe-model data/lang_bpe_500/bpe.model \ --epoch $epoch \ --avg $avg ``` **HINT**: To use `pretrained.pt` to compute the WER for test-clean and test-other, just do the following: ``` cp icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12/exp/pretrained.pt \ /path/to/icefall/egs/librispeech/ASR/pruned_transducer_stateless/exp/epoch-999.pt ``` and pass `--epoch 999 --avg 1` to `pruned_transducer_stateless/decode.py`. [icefall]: https://github.com/k2-fsa/icefall [prepare]: https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/prepare.sh [exp]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12/tree/main/exp [data]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12/tree/main/data [test_wavs]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12/tree/main/test_wavs [log]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12/tree/main/log [icefall]: https://github.com/k2-fsa/icefall