--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - toigen metrics: - wer model-index: - name: whisper-medium-toigen-female-model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: toigen type: toigen metrics: - name: Wer type: wer value: 0.44457831325301206 --- # whisper-medium-toigen-female-model This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the toigen dataset. It achieves the following results on the evaluation set: - Loss: 0.5737 - Wer: 0.4446 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.3083 | 1.6024 | 200 | 0.6687 | 0.5309 | | 0.3381 | 3.2008 | 400 | 0.5737 | 0.4446 | | 0.2639 | 4.8032 | 600 | 0.6060 | 0.4297 | | 0.0831 | 6.4016 | 800 | 0.6427 | 0.4032 | | 0.0776 | 8.0 | 1000 | 0.6705 | 0.4209 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0