--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - bemgen metrics: - wer model-index: - name: whisper-medium-nyagen-combined-model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: bemgen type: bemgen metrics: - name: Wer type: wer value: 0.19520264681555005 --- # whisper-medium-nyagen-combined-model This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the bemgen dataset. It achieves the following results on the evaluation set: - Loss: 0.2561 - Wer: 0.1952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.1602 | 0.5326 | 200 | 0.5182 | 0.3747 | | 0.5456 | 1.0639 | 400 | 0.3445 | 0.2552 | | 0.5516 | 1.5965 | 600 | 0.2903 | 0.2413 | | 0.224 | 2.1278 | 800 | 0.2817 | 0.2384 | | 0.2413 | 2.6605 | 1000 | 0.2561 | 0.1952 | | 0.1036 | 3.1917 | 1200 | 0.2583 | 0.1904 | | 0.1135 | 3.7244 | 1400 | 0.2637 | 0.2120 | | 0.057 | 4.2557 | 1600 | 0.2731 | 0.2097 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0