--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - lozgen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-lozgen-balanced-model results: [] --- # mms-1b-lozgen-balanced-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the LOZGEN - TOI dataset. It achieves the following results on the evaluation set: - Loss: 0.5419 - Wer: 0.3662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 6.6518 | 0.8130 | 100 | 3.1671 | 0.9943 | | 2.6718 | 1.6260 | 200 | 2.2609 | 0.9316 | | 1.4567 | 2.4390 | 300 | 0.7404 | 0.7192 | | 0.7044 | 3.2520 | 400 | 0.6402 | 0.5321 | | 0.6221 | 4.0650 | 500 | 0.6065 | 0.5166 | | 0.6016 | 4.8780 | 600 | 0.5948 | 0.4787 | | 0.5686 | 5.6911 | 700 | 0.5806 | 0.4641 | | 0.6054 | 6.5041 | 800 | 0.5716 | 0.4486 | | 0.4871 | 7.3171 | 900 | 0.5732 | 0.4446 | | 0.5275 | 8.1301 | 1000 | 0.5667 | 0.4350 | | 0.5199 | 8.9431 | 1100 | 0.5688 | 0.4300 | | 0.5031 | 9.7561 | 1200 | 0.5516 | 0.4443 | | 0.4533 | 10.5691 | 1300 | 0.5577 | 0.4179 | | 0.4738 | 11.3821 | 1400 | 0.5536 | 0.4057 | | 0.4925 | 12.1951 | 1500 | 0.5503 | 0.3969 | | 0.441 | 13.0081 | 1600 | 0.5403 | 0.4005 | | 0.4177 | 13.8211 | 1700 | 0.5563 | 0.3914 | | 0.4589 | 14.6341 | 1800 | 0.5394 | 0.3876 | | 0.4131 | 15.4472 | 1900 | 0.5425 | 0.3957 | | 0.393 | 16.2602 | 2000 | 0.5469 | 0.3907 | | 0.4235 | 17.0732 | 2100 | 0.5357 | 0.3878 | | 0.4113 | 17.8862 | 2200 | 0.5391 | 0.3802 | | 0.3781 | 18.6992 | 2300 | 0.5324 | 0.3728 | | 0.3706 | 19.5122 | 2400 | 0.5463 | 0.3826 | | 0.3617 | 20.3252 | 2500 | 0.5391 | 0.3697 | | 0.401 | 21.1382 | 2600 | 0.5417 | 0.3664 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0