import math from typing import List, Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput, UNet2DModel from diffusers.utils import randn_tensor class ConsistencyPipeline(DiffusionPipeline): unet: UNet2DModel def __init__( self, unet: UNet2DModel, ) -> None: super().__init__() self.register_modules(unet=unet) @torch.no_grad() def __call__( self, steps: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, time_min: float = 0.002, time_max: float = 80.0, data_std: float = 0.5, output_type: Optional[str] = "pil", return_dict: bool = True, **kwargs, ) -> Union[Tuple, ImagePipelineOutput]: img_size = self.unet.config.sample_size shape = (1, 3, img_size, img_size) model = self.unet time: float = time_max sample = randn_tensor(shape, generator=generator, device=self.device) * time for step in self.progress_bar(range(steps)): if step > 0: time = self.search_previous_time(time) sigma = math.sqrt(time**2 - time_min**2 + 1e-6) sample = sample + sigma * randn_tensor(sample.shape, device=self.device, generator=generator) out = model(sample, torch.tensor([time], device=self.device)).sample skip_coef = data_std**2 / ((time - time_min) ** 2 + data_std**2) out_coef = data_std * time / (time**2 + data_std**2) ** (0.5) sample = (sample * skip_coef + out * out_coef).clamp(-1.0, 1.0) sample = (sample / 2 + 0.5).clamp(0, 1) image = sample.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image) def search_previous_time(self, time, time_min: float = 0.002, time_max: float = 80.0): return (2 * time + time_min) / 3 def cuda(self): self.to("cuda")